forked from GekFreeman/CDA
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsave_pred.py
138 lines (117 loc) · 4.59 KB
/
save_pred.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
from torchvision import datasets, transforms
import torch
import numpy as np
from torch.utils.data.sampler import SubsetRandomSampler
import pdb
import random
from collections import defaultdict
from PIL import Image
from collections import defaultdict
import heapq
from heapq import *
def save_target(dic,target_pred,target_path):
##h:key:{confidence,data}
# h=defaultdict(list)
target_pred= torch.nn.functional.softmax(target_pred, dim=1)
target_label=target_pred.data.max(1)[1]
pred_confidence=target_pred.data.max(1)[0]
top_n=50
for i in range(target_pred.shape[0]):
#if pred_confidence[i]>1:
# pdb.set_trace()
# print(pred_confidence[i])
if pred_confidence[i]>0.7:
# print(target_label[i],target_path[i])
key=target_label[i].detach().cpu().numpy()
key=str(key)
hea=dic[key]
heappush(hea,( pred_confidence[i],target_path[i]))
hea=heapq.nlargest(top_n,hea,key=lambda x:x[0])
dic[key]=hea
#
return dic
############
def load_target(dic,source_data1, source_label1, source_data2,source_label2):
num_s1,num_s2=source_label1.shape[0],source_label2.shape[0]
c,h,w=source_data1.shape[1],source_data1.shape[2],source_data1.shape[3]
t_data=torch.zeros((num_s1+num_s2,c,h,w),dtype=torch.float).cuda()
t_label=torch.zeros(num_s1+num_s2,dtype=torch.long).cuda()
t1_list= [random.randint(0,10) for i in range(num_s1)]
t2_list= [random.randint(0,10) for i in range(num_s2)]
for i in range(num_s1):
key=str(source_label1[i].detach().cpu().numpy())
index1=t1_list[i]
t_data[i]=dic[key][index1]
t_label[i]=source_label1[i]
for j in range(num_s2):
key=str(source_label2[j].detach().cpu().numpy())
index2=t2_list[j]
t_data[num_s1+j]=dic[key][index2]
t_label[num_s1+j]=source_label2[j]
return t_data#,t_label
def sample_sameclass(source_data,source_label,tgt_data,tgt_label):
print(torch.unique(source_label),torch.unique(tgt_label))
index_s=[]
index_t=[]
b=source_data.shape[0]
c,h,w=source_data.shape[1],source_data.shape[2],source_data.shape[3]
tgt_index=[i for i in range(tgt_data.shape[0])]
dic=defaultdict(list)
for dat,lab in zip(tgt_index,tgt_label):
#if lab==dic.keys():
key=lab.detach().cpu().numpy()
key=str(key)
dic[key].append(dat)
#t=0
for s in range(len(source_label)):
s_idx=str(source_label[s].detach().cpu().numpy())
if s_idx in dic.keys():#在源域中找到与目标域一样的类,记录编号
t=random.choice(dic[s_idx])
index_s.append(s)
index_t.append(t)
# visited.add(t)
# break
# # dt = {0: [0, 1, 2], 1: [3, 4, 5]}
# index_t = []
# for i in s:
# index_t.append(np.random.choice(dt[source_label[i]], size=1))
num=len(index_s)
s_data=torch.zeros((num,c,h,w),dtype=torch.float).cuda()
s_label=torch.zeros(num,dtype=torch.long).cuda()
t_data=torch.zeros((num,c,h,w),dtype=torch.float).cuda()
t_label=torch.zeros(num,dtype=torch.long).cuda()
# print(s_data.dtype)
for i in range(num):#按照编号去处数据替换原来值
index=index_s[i]
s_data[i,:]=source_data[index,:]
s_label[i]=source_label[index]
for j in range(num):
index=index_t[j]
t_data[j,:]=tgt_data[index,:]
t_label[j]=tgt_label[index]
return s_data, s_label ,t_data,t_label
def save_results(dic, filename, mode='w'):
""" Save the result of metrics
results: a list of numbers
"""
N = len(dic)
with open(filename, mode) as file:
# header
# file.write('Classes:\t')
idx=0
save_dic=defaultdict(list)
for key,value in dic.items():
# file.write('Classes:\t')
# file.write('{:s}\t'.format(key))
# print(key)
# print(value)
idx+=len(value)
for j in range(len(value)):
# print(value[j])
if save_dic[key] is not None:
save_dic[key].append(value[j][1])
else:
save_dic[key]=value[j][1]
for keys,values in save_dic.items():
file.write('class:{:s}:{:s}\t'.format(keys,str(values)))
print('have save classes:{:s},have save samples:{:s}'.format(str(len(dic)),str(idx)))