-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinput_Rscript.R
397 lines (361 loc) · 17.3 KB
/
input_Rscript.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
#INPUT:
##argument 1: row number of simulated file.
##argument 2: simulated rates file.
###The code is sensitive to the column names of simulated rates file, please use the exactly same column #names:
##num_tree: A integer used for numbering trees. It is used to call the phylogenetic tree, thus, it needs to ##be modified according to the tree name of the input trees.
##model_for_simulation: the true model that the input phylogenetic tree simulated with.
##model_for_estimation: the model that will be applied in the analysis.
##The following are the columns that include the initial parameters estimated by the true rates. It can ##also be modified to fixed initial parameters or optimized parameters.
#####true_lamb_par1, true_lamb_linear_par1, true_lamb_linear_par2, true_lamb_expo_par1, #true_lamb_expo_par2, true_mu_par1, true_mu_linear_par1, true_mu_linear_par2, #true_mu_expo_par1, true_mu_expo_par2
##The following are the columns that include simulated rates.
#####simulated_initial_speciation_rate, simulated_initial_extinction_rate, #simulated_initial_diversification_rate, simulated_final_speciation_rate, #simulated_final_extinction_rate, simulated_final_diversification_rate
#OUTPUT:
##The first five columns include the output of fit_bd function.
##The other columns include estimated initial (past) and final (present) speciation, extinction and diversification rates as well as the deviation and relative deviation from the simulated rates. fit_bd function.
##################***************RSCRIPT**************#######################
############# This script is used for estimation by using crown age.####################
#The R script is used for estimating initial and final speciation,extinction and diversification rates
#as well as calculate the deviation and relative deviation.
#argument 1: row number
#argument 2: simulated rates file (sensitive to the colnames)
setwd("/home/u19/cdi/RPANDA_true_initial_run1/ccc")
#parameters1:input tree numbers, start form a ends at b
rm(list=ls())
# install packages. Remember to install the packages
# on server-local place by running R script directly.
#install.packages("permute")
#install.packages("lattice")
#install.packages("vegan")
#install.packages("methods")#problem
#install.packages("nlme")
#install.packages("mgcv")
#install.packages("expm")
#install.packages("gee")
#install.packages("ape")
#install.packages("picante")
#install.packages("RPANDA")
#install.packages("pbapply")
#install.packages("Matrix")
library(permute)
library(lattice)
library(vegan)
library(methods)
library(Matrix)
library(nlme)
library(mgcv)
library(expm)
library(gee)
library(ape)
library(picante)
library(RPANDA)
library(pbapply)
#parameter2:the right model and model for simulation,cl+ll+el+ce+le+ee+cc+lc+ec
cc=1
lc=2
ec=3
cl=4
ll=5
el=6
ce=7
le=8
ee=9
#############################################################
#Need to be change manually for different sampling size. "fra" is the fraction of sampling species
##of total species. For example, fra=0.25 means there are 25% of species been sampled.
fra=1
args = commandArgs(trailingOnly=TRUE)
#*****need to be change for diffrent models.
#read trees according to the input row number and "num_tree" in input file.
#args[1]<-"1"
#args[2]<-"out.csv"
rownumber<-args[1]
rownumber<-as.numeric(rownumber)
simulate<-args[2]
simulate<-toString(simulate)
simulate<-read.csv(simulate)
#rownumber<-toString(rownumber)
simodel<-simulate$model_for_simulation[rownumber]
simodel<-toString(simodel)
rightmodel=get(simodel)
esmodel<-simulate$model_for_estimation[rownumber]
esmodel<-toString(esmodel)
r_esmodel<-esmodel
esmodel=get(esmodel)
#pay attention, still need to change some parameters in the RPANDA package
###################################################################
modelname<-c("cc","lc","ec","cl","ll","el","ce","le","ee")
#read arguments-inputs
treenumber<-simulate$num_tree[rownumber]
treenumber<-toString(treenumber)
intree<-paste0("tree_",simodel,"_",treenumber,".tre")
intree<-read.tree(intree)
### initial set up for RPANDA_function for speciation and extinction rates-------------------
#set intitial subobjects to null
s_tree<-NULL
#set initial parameters for RPANDA
#mu
f.mu_c<-function(t,y){y[1]}
f.mu_l<-function(t,y){y[1]+y[2]*t}
f.mu_expo<-function(t,y){y[1]*exp(y[2]*t)}
#lamb
f.lamb_c<-function(t,y){y[1]}
f.lamb_l<-function(t,y){y[1]+y[2]*t}
f.lamb_expo<-function(t,y){y[1]*exp(y[2]*t)}
#initial
lamb_par_init_c<-c(simulate$true_lamb_par1[rownumber])
mu_par_init_c<-c(simulate$true_mu_par1[rownumber])
lamb_par_init_linear<-c(simulate$true_lamb_par1[rownumber],simulate$true_lamb_linear_par2[rownumber])
mu_par_init_linear<-c(simulate$true_mu_par1[rownumber],simulate$true_mu_linear_par2[rownumber])
lamb_par_init_expo<-c(simulate$true_lamb_par1[rownumber],simulate$true_lamb_expo_par2[rownumber])
mu_par_init_expo<-c(simulate$true_mu_par1[rownumber],simulate$true_mu_expo_par2[rownumber])
#tot_time_crown
tot_time<-max(node.age(intree)$ages)
res_crown<-NULL
#records for initial rates
i_speci_crown<-NA
i_extin_crown<-NA
i_netdiv_crown<-NA
i_deviation_of_speciation_rate<-NA
i_deviation_of_extinction_rate<-NA
i_deviation_of_diversification_rate<-NA
i_relative_deviation_of_speciation_rate<-NA
i_relative_deviation_of_extinction_rate<-NA
i_relative_deviation_of_diversification_rate<-NA
#records for final rates
f_speci_crown<-NA
f_extin_crown<-NA
f_netdiv_crown<-NA
f_deviation_of_speciation_rate<-NA
f_deviation_of_extinction_rate<-NA
f_deviation_of_diversification_rate<-NA
f_relative_deviation_of_speciation_rate<-NA
f_relative_deviation_of_extinction_rate<-NA
f_relative_deviation_of_diversification_rate<-NA
#records of RPANDA parameters
lamb_par1<-NA
lamb_par2<-NA
mu_par1<-NA
mu_par2<-NA
tryCatch(
{
##############################################################################
#######*******NEED TO BE CHANGE FOR DIFFERENT ESTIMATED MODEL
if (esmodel==cc){
#1 cc
tryCatch(
{ res_crown<-fit_bd(intree, tot_time, f.lamb_c, f.mu_c,
lamb_par_init_c, mu_par_init_c, f =fra,
# meth = "Nelder-Mead",
cst.lamb = TRUE, cst.mu = T,
expo.lamb = FALSE, expo.mu = FALSE, fix.mu = FALSE,
dt=0, cond = "crown")
lamb_par1<-res_crown$lamb_par[1]
mu_par1<-res_crown$mu_par[1]},
error=function(e){})
print("cc")} else if(esmodel==lc ){
#2 lc
tryCatch(
{ res_crown<-fit_bd(intree, tot_time, f.lamb_l, f.mu_c,
lamb_par_init_linear, mu_par_init_c, f =fra,
# meth = "Nelder-Mead",
cst.lamb = F, cst.mu = T,
expo.lamb = F, expo.mu = F, fix.mu = FALSE,
dt=0, cond = "crown")
lamb_par1<-res_crown$lamb_par[1]
mu_par1<-res_crown$mu_par[1]
lamb_par2<-res_crown$lamb_par[2]},
error=function(e){})
print("lc")} else if (esmodel==ec){
#3 ec
tryCatch(
{ res_crown<-fit_bd(intree, tot_time, f.lamb_expo, f.mu_c,
lamb_par_init_expo, mu_par_init_c, f =fra,
# meth = "Nelder-Mead",
cst.lamb = F, cst.mu = T,
expo.lamb = T, expo.mu = F, fix.mu = FALSE,
dt=0, cond = "crown")
lamb_par1<-res_crown$lamb_par[1]
mu_par1<-res_crown$mu_par[1]
lamb_par2<-res_crown$lamb_par[2] },
error=function(e){})
print("3")} else if (esmodel==cl){
#4 cl
tryCatch(
{ res_crown<-fit_bd(intree, tot_time, f.lamb_c, f.mu_l,
lamb_par_init_c,mu_par_init_linear, f =fra,
cst.lamb = TRUE, cst.mu = FALSE,
expo.lamb = FALSE, expo.mu = FALSE, fix.mu = FALSE,
dt=0, cond = "crown")
lamb_par1<-res_crown$lamb_par[1]
mu_par1<-res_crown$mu_par[1]
# lamb_par2<-res_crown$lamb_par[2]
mu_par2<-res_crown$mu_par[2]},
error=function(e){})
print("cl")} else if (esmodel==ll){
#5 ll
tryCatch(
{ res_crown<-fit_bd(intree, tot_time, f.lamb_l, f.mu_l,
lamb_par_init_linear,mu_par_init_linear, f =fra,
# meth = "Nelder-Mead",
cst.lamb = F, cst.mu = F,
expo.lamb = F, expo.mu = F, fix.mu = FALSE,
dt=0, cond = "crown")
lamb_par1<-res_crown$lamb_par[1]
mu_par1<-res_crown$mu_par[1]
lamb_par2<-res_crown$lamb_par[2]
mu_par2<-res_crown$mu_par[2] },
error=function(e){})
print("ll")} else if (esmodel==el){
#6 el
tryCatch(
{ res_crown<-fit_bd(intree, tot_time, f.lamb_expo, f.mu_l,
lamb_par_init_expo, mu_par_init_linear, f =fra,
# meth = "Nelder-Mead",
cst.lamb = F, cst.mu = F,
expo.lamb = T, expo.mu = F, fix.mu = FALSE,
dt=0, cond = "crown")
lamb_par1<-res_crown$lamb_par[1]
mu_par1<-res_crown$mu_par[1]
lamb_par2<-res_crown$lamb_par[2]
mu_par2<-res_crown$mu_par[2] },
error=function(e){})
print("el")} else if (esmodel==ce){
#7 ce
tryCatch(
{ res_crown<-fit_bd(intree, tot_time, f.lamb_c, f.mu_expo,
lamb_par_init_c, mu_par_init_expo, f =fra,
# meth = "Nelder-Mead",
cst.lamb = TRUE, cst.mu = FALSE,
expo.lamb = FALSE, expo.mu = T, fix.mu = FALSE,
dt=0, cond = "crown")
lamb_par1<-res_crown$lamb_par[1]
mu_par1<-res_crown$mu_par[1]
# lamb_par2<-res_crown$lamb_par[2]
mu_par2<-res_crown$mu_par[2] },
error=function(e){})
print("ce")} else if (esmodel==le){
#8 le
tryCatch(
{ res_crown<-fit_bd(intree, tot_time, f.lamb_l, f.mu_expo,
lamb_par_init_linear,mu_par_init_expo, f =fra,
# meth = "Nelder-Mead",
cst.lamb = F, cst.mu = F,
expo.lamb = F, expo.mu = T, fix.mu = FALSE,
dt=0, cond = "crown")
lamb_par1<-res_crown$lamb_par[1]
mu_par1<-res_crown$mu_par[1]
lamb_par2<-res_crown$lamb_par[2]
mu_par2<-res_crown$mu_par[2] },
error=function(e){})
print("le")} else if (esmodel==ee){
#9 ee
tryCatch(
{ res_crown<-fit_bd(intree, tot_time, f.lamb_expo, f.mu_expo,
lamb_par_init_expo, mu_par_init_expo, f =fra,
# meth = "Nelder-Mead",
cst.lamb = F, cst.mu = F,
expo.lamb = T, expo.mu = T, fix.mu = FALSE,
dt=0, cond = "crown")
lamb_par1<-res_crown$lamb_par[1]
mu_par1<-res_crown$mu_par[1]
lamb_par2<-res_crown$lamb_par[2]
mu_par2<-res_crown$mu_par[2] },
error=function(e){})
print("ee")} else {
print("wrong input estimated model")
}
###############################################
#######################################
#initial
inirates<-function(model,y1,y2,t){
if (model=="c"){
rate=y1
}else if(model=="l"){
rate=y1+y2*t
}else if(model=="e"){
rate=y1*exp(y2*t)
}
rate<-abs(rate)
return(rate)
}
speciation_model<-substring(r_esmodel,1,1)
i_speci_crown=
inirates(speciation_model,lamb_par1,lamb_par2,tot_time)
extinction_model<-substring(r_esmodel,2,2)
i_extin_crown=
inirates(extinction_model,mu_par1,mu_par2,tot_time)
i_netdiv_crown<- i_speci_crown - i_extin_crown
i_deviation_of_speciation_rate<-i_speci_crown- simulate$simulated_initial_speciation_rate[rownumber]
i_deviation_of_extinction_rate<- i_extin_crown-simulate$simulated_initial_extinction_rate[rownumber]
i_deviation_of_diversification_rate<-i_netdiv_crown- simulate$simulated_initial_diversification_rate[rownumber]
i_relative_deviation_of_speciation_rate<-100*(i_deviation_of_speciation_rate/(simulate$simulated_initial_speciation_rate[rownumber]))
i_relative_deviation_of_extinction_rate<-100*(i_deviation_of_extinction_rate/(simulate$simulated_initial_extinction_rate[rownumber]))
i_relative_deviation_of_diversification_rate<-100*(i_deviation_of_diversification_rate/(simulate$simulated_initial_diversification_rate[rownumber]))
#final Use absolute values
f_speci_crown<-abs(lamb_par1)
f_extin_crown<-abs(mu_par1)
f_netdiv_crown<- f_speci_crown - f_extin_crown
f_deviation_of_speciation_rate<-f_speci_crown- simulate$simulated_final_speciation_rate[rownumber]
f_deviation_of_extinction_rate<- f_extin_crown-simulate$simulated_final_extinction_rate[rownumber]
f_deviation_of_diversification_rate<-f_netdiv_crown- simulate$simulated_final_diversification_rate[rownumber]
f_relative_deviation_of_speciation_rate<-100*(f_deviation_of_speciation_rate/(simulate$simulated_final_speciation_rate[rownumber]))
f_relative_deviation_of_extinction_rate<-100*(f_deviation_of_extinction_rate/(simulate$simulated_final_extinction_rate[rownumber]))
f_relative_deviation_of_diversification_rate<-100*(f_deviation_of_diversification_rate/(simulate$simulated_final_diversification_rate[rownumber]))
s_tree<-c(
res_crown$LH,
res_crown$aicc,
lamb_par1,
lamb_par2,
mu_par1,
mu_par2,
#1. initial rates
i_speci_crown,
i_extin_crown,
i_netdiv_crown,
i_deviation_of_speciation_rate,
i_deviation_of_extinction_rate,
i_deviation_of_diversification_rate,
i_relative_deviation_of_speciation_rate,
i_relative_deviation_of_extinction_rate,
i_relative_deviation_of_diversification_rate,
#2. final rates
f_speci_crown,
f_extin_crown,
f_netdiv_crown,
f_deviation_of_speciation_rate,
f_deviation_of_extinction_rate,
f_deviation_of_diversification_rate,
f_relative_deviation_of_speciation_rate,
f_relative_deviation_of_extinction_rate,
f_relative_deviation_of_diversification_rate)
},
error=function(e){})
#write 9 models into sum_s
s_tree<-rbind(s_tree)
colnames(s_tree)<-c(
"ti_maximum_log_likelihood_value",
"ti_aicc",
"ti_lamb_par1",
"ti_lamb_par2",
"ti_mu_par1",
"ti_mu_par2",
"ti_estimated_initial_speciation_rate",
"ti_estimated_initial_extinction_rate",
"ti_estimated_initial_diversification_rate",
"ti_deviation_of_initial_speciation_rate",
"ti_deviation_of_initial_extinction_rate",
"ti_deviation_of_initial_diversification_rate",
"ti_relative_deviation_of_initial_speciation_rate",
"ti_relative_deviation_of_initial_extinction_rate",
"ti_relative_deviation_of_initial_diversification_rate",
"ti_estimated_final_speciation_rate",
"ti_estimated_final_extinction_rate",
"ti_estimated_final_diversification_rate",
"ti_deviation_of_final_speciation_rate",
"ti_deviation_of_final_extinction_rate",
"ti_deviation_of_final_diversification_rate",
"ti_relative_deviation_of_final_speciation_rate",
"ti_relative_deviation_of_final_extinction_rate",
"ti_relative_deviation_of_final_diversification_rate")
output<-cbind(simulate[rownumber,],s_tree)
write.csv(output,paste0("true_initial_",treenumber,"_",modelname[rightmodel],"_",modelname[esmodel],".csv"),row.names = F)