A dataset can be used by accessing DatasetCatalog
for its data, or MetadataCatalog for its metadata (class names, etc).
This document explains how to setup the builtin datasets so they can be used by the above APIs.
Use Custom Datasets gives a deeper dive on how to use DatasetCatalog
and MetadataCatalog
,
and how to add new datasets to them.
FrozenSeg has builtin support for a few datasets.
The datasets are assumed to exist in a directory specified by the environment variable
DETECTRON2_DATASETS
.
Under this directory, detectron2 will look for datasets in the structure described below, if needed.
$DETECTRON2_DATASETS/
# panoptic datasets
ADEChallengeData2016/
coco/
cityscapes/
mapillary_vistas/
bdd100k/
# semantic datasets
VOCdevkit/
ADE20K_2021_17_01/
pascal_ctx_d2/
pascal_voc_d2/
You can set the location for builtin datasets by export DETECTRON2_DATASETS=/path/to/datasets
.
If left unset, the default is ./datasets
relative to your current working directory.
Expected dataset structure for COCO:
coco/
annotations/
instances_{train,val}2017.json
panoptic_{train,val}2017.json
{train,val}2017/
# image files that are mentioned in the corresponding json
panoptic_{train,val}2017/ # png annotations
panoptic_semseg_{train,val}2017/ # generated by the script mentioned below
Install panopticapi by:
pip install git+https://github.com/cocodataset/panopticapi.git
Then, run python datasets/prepare_coco_semantic_annos_from_panoptic_annos.py
, to extract semantic annotations from panoptic annotations (only used for evaluation).
Expected dataset structure for cityscapes:
cityscapes/
gtFine/
train/
aachen/
color.png, instanceIds.png, labelIds.png, polygons.json,
labelTrainIds.png
...
val/
test/
# below are generated Cityscapes panoptic annotation
cityscapes_panoptic_train.json
cityscapes_panoptic_train/
cityscapes_panoptic_val.json
cityscapes_panoptic_val/
cityscapes_panoptic_test.json
cityscapes_panoptic_test/
leftImg8bit/
train/
val/
test/
Install cityscapes scripts by:
pip install git+https://github.com/mcordts/cityscapesScripts.git
Note: to create labelTrainIds.png, first prepare the above structure, then run cityscapesescript with:
CITYSCAPES_DATASET=/path/to/abovementioned/cityscapes python cityscapesscripts/preparation/createTrainIdLabelImgs.py
These files are not needed for instance segmentation.
Note: to generate Cityscapes panoptic dataset, run cityscapesescript with:
CITYSCAPES_DATASET=/path/to/abovementioned/cityscapes python cityscapesscripts/preparation/createPanopticImgs.py
These files are not needed for semantic and instance segmentation.
Expected dataset structure for ADE20k (A150):
ADEChallengeData2016/
images/
annotations/
objectInfo150.txt
# download instance annotation
annotations_instance/
# generated by prepare_ade20k_sem_seg.py
annotations_detectron2/
# below are generated by prepare_ade20k_pan_seg.py
ade20k_panoptic_{train,val}.json
ade20k_panoptic_{train,val}/
# below are generated by prepare_ade20k_ins_seg.py
ade20k_instance_{train,val}.json
The directory annotations_detectron2
is generated by running python datasets/prepare_ade20k_sem_seg.py
.
Install panopticapi by:
pip install git+https://github.com/cocodataset/panopticapi.git
Download the instance annotation from http://sceneparsing.csail.mit.edu/:
wget http://sceneparsing.csail.mit.edu/data/ChallengeData2017/annotations_instance.tar
Then, run python datasets/prepare_ade20k_pan_seg.py
, to combine semantic and instance annotations for panoptic annotations.
And run python datasets/prepare_ade20k_ins_seg.py
, to extract instance annotations in COCO format.
Expected dataset structure for Mapillary Vistas:
mapillary_vistas/
training/
images/
instances/
labels/
panoptic/
validation/
images/
instances/
labels/
panoptic/
No preprocessing is needed for Mapillary Vistas on semantic and panoptic segmentation.
Expected dataset structure for BDD100K
bdd100k/
images/
10k/
train/
val/
test/
json
labels/
pan_seg/
sem_seg/
coco-format
annotations is obtained by running:
cd $DETECTRON2_DATASETS
wget https://github.com/chenxi52/FrozenSeg/releases/download/latest/bdd100k_json.zip
unzip bdd100k_json.zip
Expected dataset structure for ADE20k-Full (A-847):
ADE20K_2021_17_01/
images/
index_ade20k.pkl
objects.txt
# generated by prepare_ade20k_full_sem_seg.py
images_detectron2/
annotations_detectron2/
Register and download the dataset from https://groups.csail.mit.edu/vision/datasets/ADE20K/:
cd $DETECTRON2_DATASETS
wget your/personal/download/link/{username}_{hash}.zip
unzip {username}_{hash}.zip
Generate the directories ADE20K_2021_17_01/images_detectron2
and ADE20K_2021_17_01/annotations_detectron2
by running:
python datasets/prepare_ade20k_full_sem_seg.py
Expected dataset structure for PASCAL Context Full (PC-459) and PASCAL VOC (PAS-21):
VOCdevkit/
VOC2012/
Annotations/
JPEGImages/
ImageSets/
Segmentation/
VOC2010/
JPEGImages/
trainval/
trainval_merged.json
# generated by prepare_pascal_voc_sem_seg.py
pascal_voc_d2/
images/
annotations_pascal21/
# pascal 20 excludes the background class
annotations_pascal20/
# generated by prepare_pascal_ctx_sem_seg.py
pascal_ctx_d2/
images/
annotations_ctx59/
# generated by prepare_pascal_ctx_full_sem_seg.py
annotations_ctx459/
Download the dataset from http://host.robots.ox.ac.uk/pascal/VOC/:
cd $DETECTRON2_DATASETS
wget http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar
# generate folder VOCdevkit/VOC2012
tar -xvf VOCtrainval_11-May-2012.tar
Generate directory pascal_voc_d2
running:
python datasets/prepare_pascal_voc_sem_seg.py
Download the dataset from http://host.robots.ox.ac.uk/pascal/VOC/ and annotation from https://www.cs.stanford.edu/~roozbeh/pascal-context/:
cd $DETECTRON2_DATASETS
wget http://host.robots.ox.ac.uk/pascal/VOC/voc2010/VOCtrainval_03-May-2010.tar
# generate folder VOCdevkit/VOC2010
tar -xvf VOCtrainval_03-May-2010.tar
wget https://www.cs.stanford.edu/~roozbeh/pascal-context/trainval.tar.gz
# generate folder VOCdevkit/VOC2010/trainval
tar -xvzf trainval.tar.gz -C VOCdevkit/VOC2010
wget https://codalabuser.blob.core.windows.net/public/trainval_merged.json -P VOCdevkit/VOC2010/
Install Detail API by:
git clone https://github.com/zhanghang1989/detail-api.git
rm detail-api/PythonAPI/detail/_mask.c
pip install -e detail-api/PythonAPI/
Generate directory pascal_ctx_d2/images
running:
python datasets/prepare_pascal_ctx_sem_seg.py
Generate directory pascal_ctx_d2/annotations_ctx459
running:
python datasets/prepare_pascal_ctx_full_sem_seg.py