Skip to content

Latest commit

 

History

History
50 lines (38 loc) · 2.74 KB

README.md

File metadata and controls

50 lines (38 loc) · 2.74 KB

Gapped Straight-Through Estimator

PyTorch implementation of Gapped Straight-Through Estimator (GST) with experiments on MNIST-VAE and ListOps. We compare our proposed GST estimator with several discrete random variable estimators including Straight-Through Gumbel-Softmax (STGS) and Rao-Blackwellized Straight-Through Gumbel-Softmax (rao_gumbel).

Installation

We recommend using Anaconda with the following commands:

conda create -n GST python=3.8
conda activate GST
conda install pytorch==1.11.0 torchvision==0.12.0 cudatoolkit=10.2 -c pytorch
pip install -r requirements.txt

MNIST-VAE Experiment

Configurations

--mode (default: gumbel) selects the estimators. Possible choices are gumbel, rao_gumbel, gst-1.0, and gst-p.

--temperature (default: 1.0) controls the temperature of the softmax function for the soft sample.

--hard (default: True) gives hard samples using the straight-through trick; otherwise, soft samples are generated.

Example 1: train STGS at temperature 1.0

python gumbel_softmax_vae.py --mode gumbel --temperature 1.0

Example 2: train GST-1.0 at temperature 0.5

python gumbel_softmax_vae.py --mode gst-1.0 --temperature 0.5

ListOps Experiment

Configurations

Example (a): train rao_gumbel at temperature 0.1

python -m nlp.train --word-dim 300 --hidden-dim 300 --clf-hidden-dim 300 --clf-num-layers 1 --batch-size 16 --max-epoch 20 --save-dir ./checkpoint_listops --device cuda --pretrained glove.840B.300d --leaf-rnn --dropout 0.5 --lower --mode rao_gumbel --task listops --temperature 0.1

Example (b): train GST-1.0 at temperature 0.1

python -m nlp.train --word-dim 300 --hidden-dim 300 --clf-hidden-dim 300 --clf-num-layers 1 --batch-size 16 --max-epoch 20 --save-dir ./checkpoint_listops --device cuda --pretrained glove.840B.300d --leaf-rnn --dropout 0.5 --lower --mode gst-1.0 --task listops --temperature 0.1