-
Notifications
You must be signed in to change notification settings - Fork 32
/
Copy pathrun.py
321 lines (282 loc) · 15.2 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
import os
import time
import json
import shutil
import argparse
import numpy as np
from tqdm import tqdm
import random
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn import CrossEntropyLoss
from torch.optim import Adam
from torch.utils.data import DataLoader
from transformers import BertModel, BertConfig, BertTokenizer, BertTokenizerFast
from transformers.optimization import AdamW, get_linear_schedule_with_warmup
from dataset import SelectionDataset
from transform import SelectionSequentialTransform, SelectionJoinTransform, SelectionConcatTransform
from encoder import PolyEncoder, BiEncoder, CrossEncoder
from sklearn.metrics import label_ranking_average_precision_score
import logging
logging.basicConfig(level=logging.ERROR)
def set_seed(args):
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
def eval_running_model(dataloader, test=False):
model.eval()
eval_loss, eval_hit_times = 0, 0
nb_eval_steps, nb_eval_examples = 0, 0
r10 = r2 = r1 = r5 = 0
mrr = []
for step, batch in enumerate(dataloader):
batch = tuple(t.to(device) for t in batch)
if args.architecture == 'cross':
text_token_ids_list_batch, text_input_masks_list_batch, text_segment_ids_list_batch, labels_batch = batch
with torch.no_grad():
logits = model(text_token_ids_list_batch, text_input_masks_list_batch, text_segment_ids_list_batch)
loss = F.cross_entropy(logits, torch.argmax(labels_batch, 1))
else:
context_token_ids_list_batch, context_input_masks_list_batch, \
response_token_ids_list_batch, response_input_masks_list_batch, labels_batch = batch
with torch.no_grad():
logits = model(context_token_ids_list_batch, context_input_masks_list_batch,
response_token_ids_list_batch, response_input_masks_list_batch)
loss = F.cross_entropy(logits, torch.argmax(labels_batch, 1))
r2_indices = torch.topk(logits, 2)[1] # R 2 @ 100
r5_indices = torch.topk(logits, 5)[1] # R 5 @ 100
r10_indices = torch.topk(logits, 10)[1] # R 10 @ 100
r1 += (logits.argmax(-1) == 0).sum().item()
r2 += ((r2_indices==0).sum(-1)).sum().item()
r5 += ((r5_indices==0).sum(-1)).sum().item()
r10 += ((r10_indices==0).sum(-1)).sum().item()
# mrr
logits = logits.data.cpu().numpy()
for logit in logits:
y_true = np.zeros(len(logit))
y_true[0] = 1
mrr.append(label_ranking_average_precision_score([y_true], [logit]))
eval_loss += loss.item()
nb_eval_examples += labels_batch.size(0)
nb_eval_steps += 1
eval_loss = eval_loss / nb_eval_steps
eval_accuracy = r1 / nb_eval_examples
if not test:
result = {
'train_loss': tr_loss / nb_tr_steps,
'eval_loss': eval_loss,
'R1': r1 / nb_eval_examples,
'R2': r2 / nb_eval_examples,
'R5': r5 / nb_eval_examples,
'R10': r10 / nb_eval_examples,
'MRR': np.mean(mrr),
'epoch': epoch,
'global_step': global_step,
}
else:
result = {
'eval_loss': eval_loss,
'R1': r1 / nb_eval_examples,
'R2': r2 / nb_eval_examples,
'R5': r5 / nb_eval_examples,
'R10': r10 / nb_eval_examples,
'MRR': np.mean(mrr),
}
return result
if __name__ == '__main__':
parser = argparse.ArgumentParser()
## Required parameters
parser.add_argument("--bert_model", default='ckpt/pretrained/bert-small-uncased', type=str)
parser.add_argument("--eval", action="store_true")
parser.add_argument("--model_type", default='bert', type=str)
parser.add_argument("--output_dir", required=True, type=str)
parser.add_argument("--train_dir", default='data/ubuntu_data', type=str)
parser.add_argument("--use_pretrain", action="store_true")
parser.add_argument("--architecture", required=True, type=str, help='[poly, bi, cross]')
parser.add_argument("--max_contexts_length", default=128, type=int)
parser.add_argument("--max_response_length", default=32, type=int)
parser.add_argument("--train_batch_size", default=32, type=int, help="Total batch size for training.")
parser.add_argument("--eval_batch_size", default=32, type=int, help="Total batch size for eval.")
parser.add_argument("--print_freq", default=100, type=int, help="Log frequency")
parser.add_argument("--poly_m", default=0, type=int, help="Number of m of polyencoder")
parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.")
parser.add_argument("--weight_decay", default=0.01, type=float)
parser.add_argument("--warmup_steps", default=100, type=float)
parser.add_argument("--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer.")
parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
parser.add_argument("--num_train_epochs", default=10.0, type=float,
help="Total number of training epochs to perform.")
parser.add_argument('--seed', type=int, default=12345, help="random seed for initialization")
parser.add_argument('--gradient_accumulation_steps', type=int, default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.")
parser.add_argument(
"--fp16",
action="store_true",
help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit",
)
parser.add_argument(
"--fp16_opt_level",
type=str,
default="O1",
help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
"See details at https://nvidia.github.io/apex/amp.html",
)
parser.add_argument('--gpu', type=int, default=0)
args = parser.parse_args()
print(args)
os.environ["CUDA_VISIBLE_DEVICES"] = "%d" % args.gpu
set_seed(args)
MODEL_CLASSES = {
'bert': (BertConfig, BertTokenizerFast, BertModel),
}
ConfigClass, TokenizerClass, BertModelClass = MODEL_CLASSES[args.model_type]
## init dataset and bert model
tokenizer = TokenizerClass.from_pretrained(os.path.join(args.bert_model, "vocab.txt"), do_lower_case=True, clean_text=False)
context_transform = SelectionJoinTransform(tokenizer=tokenizer, max_len=args.max_contexts_length)
response_transform = SelectionSequentialTransform(tokenizer=tokenizer, max_len=args.max_response_length)
concat_transform = SelectionConcatTransform(tokenizer=tokenizer, max_len=args.max_response_length+args.max_contexts_length)
print('=' * 80)
print('Train dir:', args.train_dir)
print('Output dir:', args.output_dir)
print('=' * 80)
if not args.eval:
train_dataset = SelectionDataset(os.path.join(args.train_dir, 'train.txt'),
context_transform, response_transform, concat_transform, sample_cnt=None, mode=args.architecture)
val_dataset = SelectionDataset(os.path.join(args.train_dir, 'dev.txt'),
context_transform, response_transform, concat_transform, sample_cnt=1000, mode=args.architecture)
train_dataloader = DataLoader(train_dataset, batch_size=args.train_batch_size, collate_fn=train_dataset.batchify_join_str, shuffle=True, num_workers=0)
t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs
else: # test
val_dataset = SelectionDataset(os.path.join(args.train_dir, 'test.txt'),
context_transform, response_transform, concat_transform, sample_cnt=None, mode=args.architecture)
val_dataloader = DataLoader(val_dataset, batch_size=args.eval_batch_size, collate_fn=val_dataset.batchify_join_str, shuffle=False, num_workers=0)
epoch_start = 1
global_step = 0
best_eval_loss = float('inf')
best_test_loss = float('inf')
if not os.path.exists(args.output_dir):
os.makedirs(args.output_dir)
shutil.copyfile(os.path.join(args.bert_model, 'vocab.txt'), os.path.join(args.output_dir, 'vocab.txt'))
shutil.copyfile(os.path.join(args.bert_model, 'config.json'), os.path.join(args.output_dir, 'config.json'))
log_wf = open(os.path.join(args.output_dir, 'log.txt'), 'a', encoding='utf-8')
print (args, file=log_wf)
state_save_path = os.path.join(args.output_dir, '{}_{}_pytorch_model.bin'.format(args.architecture, args.poly_m))
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
########################################
## build BERT encoder
########################################
bert_config = ConfigClass.from_json_file(os.path.join(args.bert_model, 'config.json'))
if args.use_pretrain and not args.eval:
previous_model_file = os.path.join(args.bert_model, "pytorch_model.bin")
print('Loading parameters from', previous_model_file)
log_wf.write('Loading parameters from %s' % previous_model_file + '\n')
model_state_dict = torch.load(previous_model_file, map_location="cpu")
bert = BertModelClass.from_pretrained(args.bert_model, state_dict=model_state_dict)
del model_state_dict
else:
bert = BertModelClass(bert_config)
if args.architecture == 'poly':
model = PolyEncoder(bert_config, bert=bert, poly_m=args.poly_m)
elif args.architecture == 'bi':
model = BiEncoder(bert_config, bert=bert)
elif args.architecture == 'cross':
model = CrossEncoder(bert_config, bert=bert)
else:
raise Exception('Unknown architecture.')
model.resize_token_embeddings(len(tokenizer))
model.to(device)
if args.eval:
print('Loading parameters from', state_save_path)
model.load_state_dict(torch.load(state_save_path))
test_result = eval_running_model(val_dataloader, test=True)
print (test_result)
exit()
no_decay = ["bias", "LayerNorm.weight"]
optimizer_grouped_parameters = [
{
"params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
"weight_decay": args.weight_decay,
},
{"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], "weight_decay": 0.0},
]
optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
scheduler = get_linear_schedule_with_warmup(
optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total
)
if args.fp16:
try:
from apex import amp
except ImportError:
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)
print_freq = args.print_freq//args.gradient_accumulation_steps
eval_freq = min(len(train_dataloader) // 2, 1000)
eval_freq = eval_freq//args.gradient_accumulation_steps
print('Print freq:', print_freq, "Eval freq:", eval_freq)
for epoch in range(epoch_start, int(args.num_train_epochs) + 1):
tr_loss = 0
nb_tr_steps = 0
with tqdm(total=len(train_dataloader)//args.gradient_accumulation_steps) as bar:
for step, batch in enumerate(train_dataloader):
model.train()
optimizer.zero_grad()
batch = tuple(t.to(device) for t in batch)
if args.architecture == 'cross':
text_token_ids_list_batch, text_input_masks_list_batch, text_segment_ids_list_batch, labels_batch = batch
loss = model(text_token_ids_list_batch, text_input_masks_list_batch, text_segment_ids_list_batch, labels_batch)
else:
context_token_ids_list_batch, context_input_masks_list_batch, \
response_token_ids_list_batch, response_input_masks_list_batch, labels_batch = batch
loss = model(context_token_ids_list_batch, context_input_masks_list_batch,
response_token_ids_list_batch, response_input_masks_list_batch,
labels_batch)
loss = loss / args.gradient_accumulation_steps
if args.fp16:
with amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
else:
loss.backward()
tr_loss += loss.item()
if (step + 1) % args.gradient_accumulation_steps == 0:
if args.fp16:
torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm)
else:
torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
nb_tr_steps += 1
optimizer.step()
scheduler.step()
model.zero_grad()
global_step += 1
if nb_tr_steps and nb_tr_steps % print_freq == 0:
bar.update(min(print_freq, nb_tr_steps))
time.sleep(0.02)
print(global_step, tr_loss / nb_tr_steps)
log_wf.write('%d\t%f\n' % (global_step, tr_loss / nb_tr_steps))
if global_step and global_step % eval_freq == 0:
val_result = eval_running_model(val_dataloader)
print('Global Step %d VAL res:\n' % global_step, val_result)
log_wf.write('Global Step %d VAL res:\n' % global_step)
log_wf.write(str(val_result) + '\n')
if val_result['eval_loss'] < best_eval_loss:
best_eval_loss = val_result['eval_loss']
val_result['best_eval_loss'] = best_eval_loss
# save model
print('[Saving at]', state_save_path)
log_wf.write('[Saving at] %s\n' % state_save_path)
torch.save(model.state_dict(), state_save_path)
log_wf.flush()
# add a eval step after each epoch
val_result = eval_running_model(val_dataloader)
print('Epoch %d, Global Step %d VAL res:\n' % (epoch, global_step), val_result)
log_wf.write('Global Step %d VAL res:\n' % global_step)
log_wf.write(str(val_result) + '\n')
if val_result['eval_loss'] < best_eval_loss:
best_eval_loss = val_result['eval_loss']
val_result['best_eval_loss'] = best_eval_loss
# save model
print('[Saving at]', state_save_path)
log_wf.write('[Saving at] %s\n' % state_save_path)
torch.save(model.state_dict(), state_save_path)
print(global_step, tr_loss / nb_tr_steps)
log_wf.write('%d\t%f\n' % (global_step, tr_loss / nb_tr_steps))