-
Notifications
You must be signed in to change notification settings - Fork 57
/
Copy pathpreprocess.py
138 lines (119 loc) · 5.09 KB
/
preprocess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
# Copyright 2018 Chongyi Zheng. All rights reserved.
#
# This software implements a 3D human skinning model, SMPL, with tensorflow
# and numpy.
# For more detail, see the paper - SMPL: A Skinned Multi-Person Linear Model -
# published by Max Planck Institute for Intelligent Systems on SIGGRAPH ASIA 2015.
#
# Here we provide the software for research purposes only.
# More information about SMPL is available on http://smpl.is.tue.mpg.
#
# ============================= preprocess.py =================================
# File Description:
#
# This file loads the models downloaded from the official SMPL website, grab
# data and write them in to numpy and json format.
#
# =============================================================================
#!/usr/bin/python2
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import sys
import os
import numpy as np
import pickle as pkl
import json
def main(args):
"""Main entrance.
Arguments
----------
- args: list of strings
Command line arguments.
Returns
----------
"""
gender = args[1]
raw_model_path = args[2]
save_dir = args[3]
if gender == 'female':
NP_SAVE_FILE = 'smpl_female.npz'
JSON_SVAE_FILE = 'smpl_female.json'
elif gender == 'male':
NP_SAVE_FILE = 'smpl_male.npz'
JSON_SVAE_FILE = 'smpl_male.json'
else:
raise SystemError('Please specify gender of the model!\n'
'USAGE: \'*f*.pkl\' - female, '
'\'*m*.pkl\' - male')
if not os.path.exists(save_dir):
os.makedirs(save_dir)
np_save_path = os.path.join(save_dir, NP_SAVE_FILE)
json_save_path = os.path.join(save_dir, JSON_SVAE_FILE)
# * Model Data Description * #
# vertices_template: global vertex locations of template - (6890, 3)
# face_indices: vertex indices of each face (triangles) - (13776, 3)
# joint_regressor: joint regressor - (24, 6890)
# kinematic_tree_table: table of kinematic tree - (2, 24)
# weights: weights for linear blend skinning - (6890, 24)
# shape_blend_shapes: shape blend shapes - (6890, 3, 10)
# pose_blend_shapes: pose blend shapes - (6890, 3, 207)
# * Extra Data Description *
# Besides the data above, the official model provide the following things.
# The pickle file downloaded from SMPL website seems to be redundant or
# some of the contents are used for training the model. None of them will
# be used to generate a new skinning.
#
# bs_stype: blend skinning style - (default)linear blend skinning
# bs_type: blend skinning type - (default) linear rotation minimization
# J: global joint locations of the template mesh - (24, 3)
# J_regressor_prior: prior joint regressor - (24, 6890)
# pose_training_info: pose training information - string list with 6
# elements.
# vert_sym_idxs: symmetrical corresponding vertex indices - (6890, )
# weights_prior: prior weights for linear blend skinning
with open(raw_model_path, 'rb') as f:
raw_model_data = pkl.load(f)
vertices_template = np.array(raw_model_data['v_template'])
face_indices = np.array(raw_model_data['f'] + 1) # starts from 1
weights = np.array(raw_model_data['weights'])
shape_blend_shapes = np.array(raw_model_data['shapedirs'])
pose_blend_shapes = np.array(raw_model_data['posedirs'])
joint_regressor = np.array(raw_model_data['J_regressor'].toarray())
kinematic_tree = np.array(raw_model_data['kintree_table'])
model_data_np = {
'vertices_template': vertices_template,
'face_indices': face_indices,
'weights': weights,
'shape_blend_shapes': shape_blend_shapes,
'pose_blend_shapes': pose_blend_shapes,
'joint_regressor': joint_regressor,
'kinematic_tree': kinematic_tree
}
# Data must be converted to list before storing as json.
model_data_json = {
'vertices_template': vertices_template.tolist(),
'face_indices': face_indices.tolist(),
'weights': weights.tolist(),
'shape_blend_shapes': shape_blend_shapes.tolist(),
'pose_blend_shapes': pose_blend_shapes.tolist(),
'joint_regressor': joint_regressor.tolist(),
'kinematic_tree': kinematic_tree.tolist()
}
np.savez(np_save_path, **model_data_np)
with open(json_save_path, 'wb+') as f:
json.dump(model_data_json, f, indent=4, sort_keys=True)
print('Save SMPL Model to: ', os.path.abspath(save_dir))
if __name__ == '__main__':
if sys.version_info[0] != 2:
raise EnvironmentError('Run this file with Python2!')
if len(sys.argv) < 4:
raise SystemError('Too few arguments!\n'
'USAGE: python2 preprocess.py '
'<gender> <path-to-the-pkl> '
'<dir-to-the-model>')
elif len(sys.argv) > 4:
raise SystemError('Too many arguments, only one model at a time!\n'
'USAGE: python2 preprocess.py '
'<path-to-the-pkl> <dir-to-the-model>')
main(sys.argv)