-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlogic.tex
131 lines (122 loc) · 4.76 KB
/
logic.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
\documentclass[If.tex]{subfiles}
\begin{document}
%\newcommand{\IF}[2]{\text{If }#1, #2}
\newcommand{\IF}[2]{#1\to#2}
\newcommand{\A}{A}
\newcommand{\B}{B}
\newcommand{\C}{C}
\newcommand{\D}{D}
\chapter*{Table of logical principles}\addcontentsline{toc}{chapter}{Table of logical principles}
\setlength{\tabcolsep}{2pt}
\begin{longtable}{r@{\hskip 5pt}NEM}
\multicolumn{4}{l}{\emph{Metarules:}} \\
RCEA* %(Substitutivity in antecedents)
& \multicolumn{3}{l}{If $⊦\A ≡ \B$ then $⊦(\IF{\A}{\C} ⊃ \IF{\B}{\C})$} \\
???*
& \multicolumn{3}{l}{If $⊦\B ⊃ \C$ then $⊦(\IF{\A}{\B} ⊃ \IF{\A}{\C})$} \\
RN*
& \multicolumn{3}{l}{If $⊦\B$ then $⊦\IF{\A}{\B}$} \\
???*
& \multicolumn{3}{l}{If $⊦\A$ then $⊦\IF{¬\A}{\B}$} \\
\\
\multicolumn{4}{l}{\emph{Least controversial principles:}} \\
CC* %(‘Conditional Conjunction’)
& (\IF{\A}{\B}) ∧ (\IF{\A}{\C}) &⊃& (\IF{\A}{(\B∧\C)}) \\
ID** %(‘Identity’)
& A &\to& A \\ %\IF{\A}{\A} \\
MP** %(‘Modus Ponens’)
& (\IF{\A}{\B}) &⊃& (\A ⊃ \B) \\
CK*
& (\IF{\A}{(\B ⊃ \C)}) &⊃& (\IF{\A}{\B} ⊃ \IF{\A}{\C}) \\
\\
\multicolumn{4}{l}{\emph{Antecedent equivalence principles:}} \\
CSO**
& ((\IF{\A}{\B}) ∧ (\IF{\B}{\A}) ∧ (\IF{\A}{\C})) &⊃& (\IF{\B}{\C}) \\
RCV* %(‘Very Limited Antecedent Strengthening’)
& (\IF{\A}{\B}) ∧ (\IF{\A}{\C}) &⊃& (\IF{(\A ∧ \B)}{\C}) \\
RT* %(‘Cumulative Transitivity’)
& (\IF{\A}{\B}) ∧ (\IF{(\A∧\B)}{\C}) &⊃& (\IF{\A}{\C}) \\
CA* %(‘Disjunction’)
& (\IF{\A}{\C}) ∧ (\IF{\B}{\C}) &⊃& (\IF{(\A ∨ \B)}{\C}) \\
RCA*
& (\IF{(\A ∨ \B)}{\C}) &⊃& ((\IF{\A}{\C}) ∨ (\IF{\B}{\C})) \\
Cases*
& (\IF{(\A∧\B)}{\C}) ∧ (\IF{(\A ∧ ¬\B)}{\C}) &⊃& (\IF{\A}{\C})\\
CV %(‘Limited Antecedent Strengthening’)
& ¬(\IF{\A}{¬\B}) ∧ (\IF{\A}{\C}) &⊃& (\IF{(\A ∧ \B)}{\C}) \\
\\
\multicolumn{4}{l}{\emph{Principles valid for strict conditionals:}} \\
AS
& (\IF{\A}{\C}) &⊃& (\IF{(\A ∧ \B)}{\C}) \\
Contraposition
& (\IF{\A}{\B}) &⊃& (\IF{¬\B}{¬\A}) \\
Transitivity
& (\IF{\A}{\B}) ∧ (\IF{\B}{\C}) &⊃& (\IF{\A}{\C}) \\
Simplification
& (\IF{(\A ∨ \B)}{\C}) &⊃& (\IF{\A}{\C}) \\
\\
\multicolumn{4}{l}{\emph{Principles valid for material conditionals:}} \\
Or-to-if
& (\A ∨ \B) &⊃& (\IF{¬\A}{\B}) \\
Import-Export
& (\IF{\A}{(\IF{\B}{\C})}) &≡& (\IF{(\A ∧ \B)}{\C}) \\
First ‘paradox’
& ¬\A &⊃& (\IF{\A}{\B}) \\
Second ‘paradox’
& \B &⊃& (\IF{\A}{\B}) \\
Third ‘paradox’
& (\IF{\A}{\B}) &∨& (\IF{\B}{\A}) \\
\\
\multicolumn{4}{l}{\emph{Other additions:}} \\
CEM*
& (\IF{\A}{\B}) &∨& (\IF{\A}{¬\B}) \\
And-to-if (CS)**
& (\A ∧ \B) &⊃& (\IF{\A}{\B}) \\
RIE
& (\IF{\A}{(\IF{(\A ∧ \B)}{\C})}) &≡& \IF{(\A ∧ \B)}{\C} \\
CNC
& ¬((\IF{\A}{\B}) &∧& (\IF{\A}{¬\B}))
\end{longtable}
\emph{Principles about the interaction of conditionals with modals:}
\begin{center}
\begin{tabular}{r@{\hskip 5pt}NEM}
MOD*
& □\A &⊃& (\IF{\B}{\A}) \\
C0*
& □(\A ≡ \B) &⊃& ((\IF{A}{C}) ≡ (\IF{B}{C})) \\
CT*
& (\IF{¬\A}{¬\B}) &⊃& (□\B ⊃ □\A) \\
CAS*
& □(\A∧\B) &⊃& □\A \\
CRCA*
& □(\A∧\B) &⊃& □\A ∨ □\B\\
CRCV
& (\IF{¬\A}{¬\B}) &⊃& □\A ⊃ □(\A∨\B) \\
CRT
& (\IF{¬\A}{¬\B}) &⊃& □(\A∨\B) ⊃ □\A \\
CCA
& □\A ∧ □\B &⊃& □(\A ∧ \B)\\
4
& □\A &⊃& □□\A \\
B
& ¬\A &⊃& □¬□\A
\end{tabular}
\end{center}
% MOD*
% & (\IF{\A}{⊥}) &⊃& (\IF{\B}{¬\A}) \\
% C0*
% & (\IF{A}{⊥}) &⊃& ((\IF{B}{C}) ≡ \IF{(A∨B)}{C}) \\
% CT*
% & (\IF{A}{B}) ∧ (\IF{B}{⊥}) &⊃& (\IF{A}{⊥}) \\
% CAS*
% & (\IF{A}{⊥}) &⊃& (\IF{(A∧B)}{⊥}) \\
% CRCA*
% & (\IF{(\A ∨ \B)}{⊥}) &⊃& ((\IF{\A}{⊥}) ∨ (\IF{\B}{⊥})) \\
% C4
% & (\IF{\A}{⊥}) &⊃& (\IF{\B}{(\IF{\A}{⊥})})\\
% CB
% & A &⊃& \IF{(\IF{\A}{⊥})}{⊥}
We can consider the above principles on all manner of different interpretations of $□$: we indicate which interpretation is in question by adding a subscript to the name of the principle. Of particular interest is the operator $⊡$ defined in terms of the conditional as $⊡\A \equalsdef (\IF{¬\A}{⊥})$.
Principles marked ** are guaranteed simply by the form of our favoured analysis, together with the claim that the worlds are well-ordered by ‘closer than’ with the actualised world in first place, and that $\A$ is true at the actualised world iff $\A$.
Principles marked * are guaranteed by the form of our favoured analysis, together with the principles capturing the following standard role for truth at a world: $\A ∧ \B$ is true at a world iff $\A$ and $\B$ both are, $\A ∨ \B$ is true at a world iff either $\A$ or $\B$ is, and $¬\A$ is true at a world if $\A$ is not. (Chapter 4 takes seriously the idea that there are impossible worlds that do not obey these principles.)
\end{document}