forked from anotherLostKitten/paJAMeterServer
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpajameter.js
217 lines (177 loc) · 5.64 KB
/
pajameter.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
japp nspc {
required_clibs: math.h, float.h;
required_linker_flags: -lm;
}
const parse_dataset = require('./parse_mnist_dataset.js');
jdata {
struct gradient_update_t {
int dataTag;
unsigned long long int logicalId;
double gradient[7850];
} gradients as uflow;
double model[7850] as dflow;
}
let weights = new Array(7850);
const boundedDelayMax = 4;
let logicalIdCount = 0;
let data;
let inProgress = [];
const nodeDatas = new Map();
const dataInProgress = new Map();
const heartbeats = new Map();
let dataCount = 0;
const LEARNING_RATE = 0.005;
jcond {
fogOnly(me, you) {
return jsys.type === "fog";
}
deviceOnly(me, you) {
return jsys.type === "device";
}
}
jsync unsigned long long int {deviceOnly} getLogicalIdLocal() {
while(1) {
var lidhandle = getLogicalId(jsys.id);
try {
var logicalId = await lidhandle.next();
if (logicalId.value !== 0) {
lidhandle.return();
return logicalId.value;
}
} catch(e) {
console.log(e.message, "... retrying");
}
await jsys.sleep(100);
}
}
const devids = new Set();
jsync unsigned long long int {fogOnly} getLogicalId(cid: char*) {
if (devids.has(cid))
return 0;
devids.add(cid);
let lid = ++logicalIdCount;
console.log("registered node with logical id", lid);
nodeDatas.set(lid, new Set());
heartbeats.set(lid, setTimeout(() => {
console.log("device", lid, "timed out");
for (var e of nodeDatas.get(lid)) {
if (dataInProgress.has(e)) {
var vec = dataInProgress.get(e);
dataInProgress.delete(e);
vec.pop(); // datatag
var label = vec.pop();
data.push([label, vec]);
}
}
nodeDatas.get(lid).clear();
}, 5000));
return lid;
}
let datacount = 0;
jsync int[800] {deviceOnly} getNextDataLocal(logicalId: int) {
while(1) {
var dathandle = getNextData(logicalId);
try {
var data = await dathandle.next(logicalId);
dathandle.return();
// console.log("passing data value", data.value.at(-1));
if (++datacount % 100 == 0)
console.log("processed", datacount, "data items");
return data.value;
} catch(e) {
console.log(e.message, "... retrying");
}
await jsys.sleep(100);
}
}
jsync int[800] {fogOnly} getNextData(logicalId: int) {
if (!nodeDatas.has(logicalId)) {
console.log("logical id", logicalId, "not recognized, stopping device");
return [];
}
heartbeats.get(logicalId).refresh();
if (data.length > 0) {
if (nodeDatas.get(logicalId).size < boundedDelayMax) {
let dataTag = ++dataCount;
nodeDatas.get(logicalId).add(dataTag);
let vec = data.pop();
vec[1].push(vec[0]);
vec = vec[1];
// console.log(vec);
vec.push(dataTag);
dataInProgress.set(dataTag, vec);
// console.log("assigning data", dataTag, "to", logicalId);
return vec;
} else {
await jsys.sleep(100);
if (nodeDatas.get(logicalId).size > 0)
for (var e of nodeDatas.get(logicalId))
return dataInProgress.get(e);
return [0];
}
}
if (nodeDatas.get(logicalId).size > 0)
for (var e of nodeDatas.get(logicalId))
return dataInProgress.get(e);
return [];
}
function initModel() {
for (var i = 0; i < 7850; i++)
weights[i] = (Math.random() - 0.5);
model.write(weights);
}
async function applyGradients(gradient_vec) {
for (var g of gradient_vec) {
for (var i = 0; i < g.length; i++) {
weights[i] -= g[i] * LEARNING_RATE;
}
}
}
async function aggregateUpdates() {
while (data.length > 0 || dataInProgress.size > 0) {
// console.log("waiting to aggregate updates", data.length, dataInProgress.size);
var gradient_updates = await gradients.readLast();
// console.log(gradient_updates);
gradient_vec = [];
if (!Array.isArray(gradient_updates)) {
gradient_updates = [gradient_updates];
}
for (var gradient of gradient_updates) {
if (nodeDatas.has(gradient.logicalId) && dataInProgress.has(gradient.dataTag)) {
nodeDatas.get(gradient.logicalId).delete(gradient.dataTag);
heartbeats.get(gradient.logicalId).refresh();
dataInProgress.delete(gradient.dataTag);
gradient_vec.push(gradient.gradient);
}
}
applyGradients(gradient_vec);
}
console.log("done; testing");
let test_set = parse_dataset.loadTestingData();
let success = 0;
for (var img of test_set) {
var maxc = 0, maxn = -1;
for (var n = 0; n < 10; n++) {
var conf = weights[785 * n + 784];
for (var i = 0; i < 784; i++)
conf += weights[785 * n + i] * img[1][i] / 256.0;
if (conf > maxc) {
maxc = conf;
maxn = n;
}
}
if (maxn == img[0])
success++;
}
console.log("accuracy: " + success + " / " + test_set.length + " (" + (success / test_set.length * 100.0) + "%)");
}
if (jsys.type === "fog") {
data = parse_dataset.loadTrainingData();
initModel();
setInterval(() => {
// console.log("updating model");
model.write(weights);
}, 300);
await jsys.sleep(100);
aggregateUpdates();
}