-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathq_learning.py
95 lines (81 loc) · 2.4 KB
/
q_learning.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
from __future__ import print_function
import numpy as np
import pandas as pd
import time
np.random.seed(3)
N_STATES = 6 #length
ACTIONS = ['left','right'] #available actions
EPSILON = 0.9 #greedy police
ALPHA = 0.5 #learning rate
LAMBDA = 0.9 #discount factor
MAX_EPISODES = 13 #maximum episodes
FRESH_TIME = 0.1 #fresh time one move
def build_q_table(n_states,actions):
table = pd.DataFrame(
np.zeros((n_states,len(actions))),
columns = actions,
)
print(table)
return table
#build_q_table(N_STATES,ACTIONS)
def choose_action(state,q_table):
state_actions=q_table.iloc[state,:]
if(np.random.uniform()>EPSILON) or (state_actions.all()==0):
action_name = np.random.choice(ACTIONS)
else:
action_name = state_actions.argmax()
return action_name
def get_env_feedback(S,A):
if A == 'right':
if S == N_STATES-2:
S_ = 'terminal'
R = 1
else:
S_ = S + 1
R = 0
else:
R = 0
if S == 0:
S_ = S
else:
S_ = S-1
return S_, R
def update_env(S,episode,step_counter):
env_list = ['-']*(N_STATES-1) + ['T']
if S == 'terminal':
interaction = 'EPisode %s:total_steps = %s' % (episode+1,step_counter)
print('\r{}'.format(interaction), end='')
time.sleep(2)
print('\r ',end='')
else:
env_list[S] = 'o'
interaction = ''.join(env_list)
print('\r{}'.format(interaction), end='')
time.sleep(FRESH_TIME)
def rl():
q_table = build_q_table(N_STATES,ACTIONS)
for episode in range(MAX_EPISODES):
step_counter = 0
S = 0
is_terminated = False
update_env(S,episode,step_counter)
while not is_terminated:
A = choose_action(S,q_table)
S_, R = get_env_feedback(S,A)
#print(1)
q_predict = q_table.ix[S,A]
#print(1)
if S_ != 'terminal':
q_target = R +LAMBDA*q_table.iloc[S_,:].max()
else:
q_target = R
is_terminated = True
q_table.ix[S,A]+=ALPHA * (q_target - q_predict)
S = S_
update_env(S,episode,step_counter+1)
step_counter+=1
return q_table
if __name__=="__main__":
q_table = rl()
print('\r\nQ-table:\n')
print(q_table)