-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathbinary_data.py
157 lines (124 loc) · 5.09 KB
/
binary_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
from collections import Counter
from nltk.corpus import stopwords
from embeddings import GloveEmbedding
import numpy as np
stop = set(stopwords.words('english'))
def init_word_embeddings(embed_file_name, word_set, edim):
embeddings = {}
tokens = embed_file_name.split('-')
embedding = None
if tokens[0] == 'glove':
embedding = GloveEmbedding(tokens[1], d_emb=edim, show_progress=True)
if embedding:
for word in word_set:
emb = embedding.emb(word)
if emb is not None:
embeddings[word] = emb
return embeddings
def get_dataset_resources(data_file_name, sent_word2idx, target_word2idx, word_set, max_sent_len):
''' updates word2idx and word_set '''
if len(sent_word2idx) == 0:
sent_word2idx["<pad>"] = 0
word_count = []
sent_word_count = []
target_count = []
words = []
sentence_words = []
target_words = []
with open(data_file_name, 'r') as data_file:
lines = data_file.read().split('\n')
for line_no in range(0, len(lines) - 1, 3):
sentence = lines[line_no]
target = lines[line_no + 1]
polarity = int(lines[line_no + 2])
if polarity == 0:
continue
sentence.replace("$T$", "")
sentence = sentence.lower()
target = target.lower()
max_sent_len = max(max_sent_len, len(sentence.split()))
sentence_words.extend(sentence.split())
target_words.extend([target])
words.extend(sentence.split() + target.split())
sent_word_count.extend(Counter(sentence_words).most_common())
target_count.extend(Counter(target_words).most_common())
word_count.extend(Counter(words).most_common())
for word, _ in sent_word_count:
if word not in sent_word2idx:
sent_word2idx[word] = len(sent_word2idx)
for target, _ in target_count:
if target not in target_word2idx:
target_word2idx[target] = len(target_word2idx)
for word, _ in word_count:
if word not in word_set:
word_set[word] = 1
return max_sent_len
def get_embedding_matrix(embeddings, sent_word2idx, target_word2idx, edim):
''' returns the word and target embedding matrix '''
word_embed_matrix = np.zeros([len(sent_word2idx), edim], dtype=float)
target_embed_matrix = np.zeros([len(target_word2idx), edim], dtype=float)
for word in sent_word2idx:
if word in embeddings:
word_embed_matrix[sent_word2idx[word]] = embeddings[word]
for target in target_word2idx:
for word in target:
if word in embeddings:
target_embed_matrix[target_word2idx[target]] += embeddings[word]
target_embed_matrix[target_word2idx[target]] /= max(1, len(target.split()))
print(type(word_embed_matrix))
return word_embed_matrix, target_embed_matrix
def get_dataset(data_file_name, sent_word2idx, target_word2idx, embeddings):
''' returns the dataset'''
sentence_list = []
location_list = []
target_list = []
polarity_list = []
with open(data_file_name, 'r') as data_file:
lines = data_file.read().split('\n')
for line_no in range(0, len(lines) - 1, 3):
sentence = lines[line_no].lower()
target = lines[line_no + 1].lower()
polarity = int(lines[line_no + 2])
if polarity == 0:
continue
sent_words = sentence.split()
target_words = target.split()
try:
target_location = sent_words.index("$t$")
except:
print("sentence does not contain target element tag")
exit()
is_included_flag = 1
id_tokenised_sentence = []
location_tokenised_sentence = []
for index, word in enumerate(sent_words):
if word == "$t$":
continue
try:
word_index = sent_word2idx[word]
except:
print("id not found for word in the sentence")
exit()
location_info = abs(index - target_location)
if word in embeddings:
id_tokenised_sentence.append(word_index)
location_tokenised_sentence.append(location_info)
is_included_flag = 0
for word in target_words:
if word in embeddings:
is_included_flag = 1
break
try:
target_index = target_word2idx[target]
sentence_list.append(id_tokenised_sentence)
location_list.append(location_tokenised_sentence)
target_list.append(target_index)
polarity_list.append(polarity)
except:
print(target)
print("id not found for target")
exit()
if not is_included_flag:
print(sentence)
continue
return sentence_list, location_list, target_list, polarity_list