-
Notifications
You must be signed in to change notification settings - Fork 515
/
Copy pathTDDFA.py
143 lines (116 loc) · 4.84 KB
/
TDDFA.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
# coding: utf-8
__author__ = 'cleardusk'
import os.path as osp
import time
import numpy as np
import cv2
import torch
from torchvision.transforms import Compose
import torch.backends.cudnn as cudnn
import models
from bfm import BFMModel
from utils.io import _load
from utils.functions import (
crop_img, parse_roi_box_from_bbox, parse_roi_box_from_landmark,
)
from utils.tddfa_util import (
load_model, _parse_param, similar_transform,
ToTensorGjz, NormalizeGjz
)
make_abs_path = lambda fn: osp.join(osp.dirname(osp.realpath(__file__)), fn)
class TDDFA(object):
"""TDDFA: named Three-D Dense Face Alignment (TDDFA)"""
def __init__(self, **kvs):
torch.set_grad_enabled(False)
# load BFM
self.bfm = BFMModel(
bfm_fp=kvs.get('bfm_fp', make_abs_path('configs/bfm_noneck_v3.pkl')),
shape_dim=kvs.get('shape_dim', 40),
exp_dim=kvs.get('exp_dim', 10)
)
self.tri = self.bfm.tri
# config
self.gpu_mode = kvs.get('gpu_mode', False)
self.gpu_id = kvs.get('gpu_id', 0)
self.size = kvs.get('size', 120)
param_mean_std_fp = kvs.get(
'param_mean_std_fp', make_abs_path(f'configs/param_mean_std_62d_{self.size}x{self.size}.pkl')
)
# load model, default output is dimension with length 62 = 12(pose) + 40(shape) +10(expression)
model = getattr(models, kvs.get('arch'))(
num_classes=kvs.get('num_params', 62),
widen_factor=kvs.get('widen_factor', 1),
size=self.size,
mode=kvs.get('mode', 'small')
)
model = load_model(model, kvs.get('checkpoint_fp'))
if self.gpu_mode:
cudnn.benchmark = True
model = model.cuda(device=self.gpu_id)
self.model = model
self.model.eval() # eval mode, fix BN
# data normalization
transform_normalize = NormalizeGjz(mean=127.5, std=128)
transform_to_tensor = ToTensorGjz()
transform = Compose([transform_to_tensor, transform_normalize])
self.transform = transform
# params normalization config
r = _load(param_mean_std_fp)
self.param_mean = r.get('mean')
self.param_std = r.get('std')
# print('param_mean and param_srd', self.param_mean, self.param_std)
def __call__(self, img_ori, objs, **kvs):
"""The main call of TDDFA, given image and box / landmark, return 3DMM params and roi_box
:param img_ori: the input image
:param objs: the list of box or landmarks
:param kvs: options
:return: param list and roi_box list
"""
# Crop image, forward to get the param
param_lst = []
roi_box_lst = []
crop_policy = kvs.get('crop_policy', 'box')
for obj in objs:
if crop_policy == 'box':
# by face box
roi_box = parse_roi_box_from_bbox(obj)
elif crop_policy == 'landmark':
# by landmarks
roi_box = parse_roi_box_from_landmark(obj)
else:
raise ValueError(f'Unknown crop policy {crop_policy}')
roi_box_lst.append(roi_box)
img = crop_img(img_ori, roi_box)
img = cv2.resize(img, dsize=(self.size, self.size), interpolation=cv2.INTER_LINEAR)
inp = self.transform(img).unsqueeze(0)
if self.gpu_mode:
inp = inp.cuda(device=self.gpu_id)
if kvs.get('timer_flag', False):
end = time.time()
param = self.model(inp)
elapse = f'Inference: {(time.time() - end) * 1000:.1f}ms'
print(elapse)
else:
param = self.model(inp)
param = param.squeeze().cpu().numpy().flatten().astype(np.float32)
param = param * self.param_std + self.param_mean # re-scale
# print('output', param)
param_lst.append(param)
return param_lst, roi_box_lst
def recon_vers(self, param_lst, roi_box_lst, **kvs):
dense_flag = kvs.get('dense_flag', False)
size = self.size
ver_lst = []
for param, roi_box in zip(param_lst, roi_box_lst):
if dense_flag:
R, offset, alpha_shp, alpha_exp = _parse_param(param)
pts3d = R @ (self.bfm.u + self.bfm.w_shp @ alpha_shp + self.bfm.w_exp @ alpha_exp). \
reshape(3, -1, order='F') + offset
pts3d = similar_transform(pts3d, roi_box, size)
else:
R, offset, alpha_shp, alpha_exp = _parse_param(param)
pts3d = R @ (self.bfm.u_base + self.bfm.w_shp_base @ alpha_shp + self.bfm.w_exp_base @ alpha_exp). \
reshape(3, -1, order='F') + offset
pts3d = similar_transform(pts3d, roi_box, size)
ver_lst.append(pts3d)
return ver_lst