-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
260 lines (207 loc) · 8.52 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
import warnings
import numpy as np
import torch
import torch.nn.functional as F
from sklearn.cluster import KMeans
from tqdm import tqdm
from module import HeCo, Mp_encoder, Generator
from utils import load_data_mat, load_data_npz, set_params, eva, new_graph, normalize, get_A_r_flex, get_feature_dis, \
Ncontrast
warnings.filterwarnings('ignore')
# random seed
# setup_seed(args.seed)
def cross_correlation(Z_v1, Z_v2):
"""
calculate the cross-view correlation matrix S
Args:
Z_v1: the first view embedding
Z_v2: the second view embedding
Returns: S
"""
return torch.mm(F.normalize(Z_v1, dim=1), F.normalize(Z_v2, dim=1).t())
def off_diagonal(x):
"""
off-diagonal elements of x
Args:
x: the input matrix
Returns: the off-diagonal elements of x
"""
n, m = x.shape
assert n == m
return x.flatten()[:-1].view(n - 1, n + 1)[:, 1:].flatten()
def correlation_reduction_loss(S):
"""
the correlation reduction loss L: MSE for S and I (identical matrix)
Args:
S: the cross-view correlation matrix S
Returns: L
"""
return torch.diagonal(S).add(-1).pow(2).mean() + off_diagonal(S).pow(2).mean()
def target_distribution(q):
weight = q ** 2 / q.sum(0)
return (weight.t() / weight.sum(1)).t()
def train_dec():
if torch.cuda.is_available():
device = torch.device("cuda:" + str(args.gpu))
torch.cuda.set_device(args.gpu)
else:
device = torch.device("cpu")
# feats, adj_list, pos, knn_adj, label = load_data_mat(args.dataset, args.sc)
feats, adj_list, pos, knn_adj, label = load_data_npz(args.dataset, args.sc)
nb_classes = label.shape[-1]
feats_dim = feats.shape[-1]
P = int(len(adj_list))
args.views = P
knn_adj_hop = get_A_r_flex(knn_adj, args.order)
print("Dataset: ", args.dataset)
print("The number of meta-paths: ", P)
print(args)
model = HeCo(args.hidden_dim, feats_dim, args.feat_drop, args.attn_drop, P, nb_classes,
args.tau, args.lam, args)
optimiser = torch.optim.Adam(model.parameters(), lr=args.lr)
if torch.cuda.is_available():
print('Using CUDA')
model.cuda()
feats = feats.cuda()
adj_list = [mp.cuda() for mp in adj_list]
knn_adj_hop = knn_adj_hop.cuda()
pos = pos.cuda()
cnt_wait = 0
best = 1e9
loss = -1
maxAcc_kmeans = -1
best_nmi_kmeans = -1
best_ari_kmeans = -1
best_f1_kmeans = -1
best_epoch_kmeans = 0
z_mp, embeds_list, embed_q, q, contr_loss = model(feats, adj_list, pos)
kmeans = KMeans(n_clusters=nb_classes, n_init=20) # n_init:用不同的聚类中心初始化值运行算法的次数
kmeans.fit_predict(z_mp.data.cpu().numpy()) # 训练并直接预测
model.cluster_layer.data = torch.tensor(kmeans.cluster_centers_).to(device) # kmeans.cluster_centers_:返回中心的坐标
pbar = tqdm(range(args.nb_epochs))
for epoch in pbar:
model.train()
if epoch % 3 == 0: # dblp: 3 # acm: 3 freebase: 1 3
z_mp, embeds_list, embed_q, q, contr_loss = model(feats, adj_list, pos)
p = target_distribution(q.data)
y_true = np.argmax(label, axis=1)
kmeans = KMeans(n_clusters=nb_classes, n_init=20)
y_pred_kmeans = kmeans.fit_predict(z_mp.data.cpu().numpy())
acc_kmeans, nmi_kmeans, ari_kmeans, f1_kmeans = eva(y_true, y_pred_kmeans)
if acc_kmeans > maxAcc_kmeans:
maxAcc_kmeans = acc_kmeans
best_nmi_kmeans = nmi_kmeans
best_ari_kmeans = ari_kmeans
best_f1_kmeans = f1_kmeans
best_epoch_kmeans = epoch
desc = "epoch:{} acc:{:.4f} nmi:{:.4f} ari:{:.4f} loss:{:.8f} maxAcc:{:.4f}" \
" best_nmi:{:.4f} best_ari:{:.4f} best_f1:{:.4f} best_epoch:{}".format(
epoch, acc_kmeans, nmi_kmeans, ari_kmeans,
loss, maxAcc_kmeans,
best_nmi_kmeans,
best_ari_kmeans,
best_f1_kmeans,
best_epoch_kmeans)
pbar.set_description(desc) # 相当于在当前长度的基础上 +1 的操作
z_mp, embeds_list, embed_q, q, contr_loss = model(feats, adj_list, pos)
# 传播正则化
# az = torch.spmm(knn_adj.to('cuda'), z_mp)
# p_output = F.softmax(az, dim=1)
# q_output = F.softmax(z_mp, dim=1)
# log_mean_output = ((p_output + q_output) / 2).log()
# reg_loss = (F.kl_div(log_mean_output, p_output, reduction='batchmean') +
# F.kl_div(log_mean_output, q_output, reduction='batchmean')) / 2
corr_loss = 0
for i in range(len(embeds_list)):
# corr_matrix = cross_correlation(z_mp, embeds_list[i])
# corr_loss += correlation_reduction_loss(corr_matrix)
#
# corr_matrix = cross_correlation(embeds_list[i], z_mp)
# corr_loss += correlation_reduction_loss(corr_matrix)
#
corr_matrix = cross_correlation(embeds_list[i].t(), z_mp.t())
corr_loss += correlation_reduction_loss(corr_matrix)
#
# corr_matrix = cross_correlation(z_mp.t(), embeds_list[i].t())
# corr_loss += correlation_reduction_loss(corr_matrix)
z_mp_dis = get_feature_dis(z_mp)
nContrast_loss = Ncontrast(z_mp_dis, knn_adj_hop, tau=args.parm_Ncontr)
kl_loss = F.kl_div(q.log(), p, reduction='batchmean')
loss = args.parm_kl * kl_loss + args.parm_contr * contr_loss + args.parm_nContrast * nContrast_loss + args.parm_corr * corr_loss
if loss < best:
best = loss
cnt_wait = 0
else:
cnt_wait += 1
if cnt_wait == args.patience:
print('Early stopping!')
break
optimiser.zero_grad()
loss.backward()
optimiser.step()
print(best_epoch_kmeans, maxAcc_kmeans, best_nmi_kmeans, best_ari_kmeans, best_f1_kmeans, sep="---")
return maxAcc_kmeans, best_nmi_kmeans, best_ari_kmeans, best_f1_kmeans
if __name__ == '__main__':
# for parm_contr in [1]:
# for parm_nContrast in [0.1, 1, 10]: # 0.001, 0.01,
# for parm_corr in [0.001, 0.01, 0.1, 1, 10]: # 0.001, 0.01,
# for parm_Ncontr in [0.0001, 0.001, 0.01, 0.1, 1]:
# for i in range(3):
#
# print(f"第{i + 1}次循环!!")
# args.parm_contr = parm_contr
# args.parm_nContrast = parm_nContrast
# args.parm_corr = parm_corr
# args.parm_Ncontr = parm_Ncontr
# train_dec()
#
# with open(f'parameter_{args.dataset}.txt', 'a+') as f:
#
# f.write('\n')
# f.flush()
#
# f.close()
# for nContrast in [0.01, 0.1, 1, 10]:
# for corr in [0.001, 0.01, 0.1, 1, 10]:
# for i in range(3):
# args.parm_nContrast = nContrast
# args.parm_corr = corr
# print(f"第{i + 1}次循环")
# train_dec()
#
# with open(f'temp_{args.dataset}.txt', 'a+') as f:
#
# f.write('\n')
# f.flush()
#
# f.close()
# epochs = 10
# for dataset in ['acm', 'dblp', 'freebase', 'aminer']:
# args = set_params(dataset)
# for parm_contr in [0.0001, 0.0001, 0.001, 0.001, 0.1]: # [0.0001, 0.001, 0.01, 0.1, 1, 10, 100]:
# epoch_acc = 0
# epoch_nmi = 0
# epoch_ari = 0
# epoch_f1 = 0
# for i in range(epochs):
# print(f"第{i + 1}次循环 → {parm_contr}")
# args.parm_contr = parm_contr
# # args.dataset = dataset
# acc, nmi, ari, f1 = train_dec()
# epoch_acc += acc
# epoch_nmi += nmi
# epoch_ari += ari
# epoch_f1 += f1
#
# with open(f'parm_contr.txt', 'a+') as f:
# f.write(
# f"dataset: {args.dataset} -- parm_contr: {args.parm_contr} "
# f"-- mean_acc: {epoch_acc / epochs} -- mean_nmi: {epoch_nmi / epochs} "
# f"-- mean_ari: {epoch_ari / epochs} -- mean_f1: {epoch_f1 / epochs} ")
# f.write('\n')
# f.flush()
#
# f.close()
args = set_params("dblp")
train_dec()
# train_gan()