forked from mxl1990/tsne-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtsne_torch.py
241 lines (192 loc) · 6.83 KB
/
tsne_torch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
#
# tsne_torch.py
#
# Implementation of t-SNE in pytorch. The implementation was tested on pytorch
# > 1.0, and it requires Numpy to read files. In order to plot the results,
# a working installation of matplotlib is required.
#
#
# The example can be run by executing: `python tsne_torch.py`
#
#
# Created by Xiao Li on 23-03-2020.
# Copyright (c) 2020. All rights reserved.
import numpy as np
import matplotlib.pyplot as pyplot
import argparse
import torch
parser = argparse.ArgumentParser()
parser.add_argument("--xfile", type=str, default="mnist2500_X.txt", help="file name of feature stored")
parser.add_argument("--yfile", type=str, default="mnist2500_labels.txt", help="file name of label stored")
parser.add_argument("--cuda", type=int, default=1, help="if use cuda accelarate")
opt = parser.parse_args()
print("get choice from args", opt)
xfile = opt.xfile
yfile = opt.yfile
if opt.cuda:
print("set use cuda")
torch.set_default_tensor_type(torch.cuda.DoubleTensor)
else:
torch.set_default_tensor_type(torch.DoubleTensor)
def Hbeta_torch(D, beta=1.0):
P = torch.exp(-D.clone() * beta)
sumP = torch.sum(P)
H = torch.log(sumP) + beta * torch.sum(D * P) / sumP
P = P / sumP
return H, P
def x2p_torch(X, tol=1e-5, perplexity=30.0):
"""
Performs a binary search to get P-values in such a way that each
conditional Gaussian has the same perplexity.
"""
# Initialize some variables
print("Computing pairwise distances...")
(n, d) = X.shape
sum_X = torch.sum(X*X, 1)
D = torch.add(torch.add(-2 * torch.mm(X, X.t()), sum_X).t(), sum_X)
P = torch.zeros(n, n)
beta = torch.ones(n, 1)
logU = torch.log(torch.tensor([perplexity]))
n_list = [i for i in range(n)]
# Loop over all datapoints
for i in range(n):
# Print progress
if i % 500 == 0:
print("Computing P-values for point %d of %d..." % (i, n))
# Compute the Gaussian kernel and entropy for the current precision
# there may be something wrong with this setting None
betamin = None
betamax = None
Di = D[i, n_list[0:i]+n_list[i+1:n]]
(H, thisP) = Hbeta_torch(Di, beta[i])
# Evaluate whether the perplexity is within tolerance
Hdiff = H - logU
tries = 0
while torch.abs(Hdiff) > tol and tries < 50:
# If not, increase or decrease precision
if Hdiff > 0:
betamin = beta[i].clone()
if betamax is None:
beta[i] = beta[i] * 2.
else:
beta[i] = (beta[i] + betamax) / 2.
else:
betamax = beta[i].clone()
if betamin is None:
beta[i] = beta[i] / 2.
else:
beta[i] = (beta[i] + betamin) / 2.
# Recompute the values
(H, thisP) = Hbeta_torch(Di, beta[i])
Hdiff = H - logU
tries += 1
# Set the final row of P
P[i, n_list[0:i]+n_list[i+1:n]] = thisP
# Return final P-matrix
return P
def pca_torch(X, no_dims=50):
print("Preprocessing the data using PCA...")
(n, d) = X.shape
X = X - torch.mean(X, 0)
(l, M) = torch.eig(torch.mm(X.t(), X), True)
# split M real
# this part may be some difference for complex eigenvalue
# but complex eignevalue is meanless here, so they are replaced by their real part
i = 0
while i < d:
if l[i, 1] != 0:
M[:, i+1] = M[:, i]
i += 2
else:
i += 1
Y = torch.mm(X, M[:, 0:no_dims])
return Y
def tsne(X, no_dims=2, initial_dims=50, perplexity=30.0):
"""
Runs t-SNE on the dataset in the NxD array X to reduce its
dimensionality to no_dims dimensions. The syntaxis of the function is
`Y = tsne.tsne(X, no_dims, perplexity), where X is an NxD NumPy array.
"""
# Check inputs
if isinstance(no_dims, float):
print("Error: array X should not have type float.")
return -1
if round(no_dims) != no_dims:
print("Error: number of dimensions should be an integer.")
return -1
# Initialize variables
X = pca_torch(X, initial_dims)
(n, d) = X.shape
max_iter = 1000
initial_momentum = 0.5
final_momentum = 0.8
eta = 500
min_gain = 0.01
Y = torch.randn(n, no_dims)
dY = torch.zeros(n, no_dims)
iY = torch.zeros(n, no_dims)
gains = torch.ones(n, no_dims)
# Compute P-values
P = x2p_torch(X, 1e-5, perplexity)
P = P + P.t()
P = P / torch.sum(P)
P = P * 4. # early exaggeration
print("get P shape", P.shape)
P = torch.max(P, torch.tensor([1e-21]))
# Run iterations
for iter in range(max_iter):
# Compute pairwise affinities
sum_Y = torch.sum(Y*Y, 1)
num = -2. * torch.mm(Y, Y.t())
num = 1. / (1. + torch.add(torch.add(num, sum_Y).t(), sum_Y))
num[range(n), range(n)] = 0.
Q = num / torch.sum(num)
Q = torch.max(Q, torch.tensor([1e-12]))
# Compute gradient
PQ = P - Q
for i in range(n):
dY[i, :] = torch.sum((PQ[:, i] * num[:, i]).repeat(no_dims, 1).t() * (Y[i, :] - Y), 0)
# Perform the update
if iter < 20:
momentum = initial_momentum
else:
momentum = final_momentum
gains = (gains + 0.2) * ((dY > 0.) != (iY > 0.)).double() + (gains * 0.8) * ((dY > 0.) == (iY > 0.)).double()
gains[gains < min_gain] = min_gain
iY = momentum * iY - eta * (gains * dY)
Y = Y + iY
Y = Y - torch.mean(Y, 0)
# Compute current value of cost function
if (iter + 1) % 10 == 0:
C = torch.sum(P * torch.log(P / Q))
print("Iteration %d: error is %f" % (iter + 1, C))
# Stop lying about P-values
if iter == 100:
P = P / 4.
# Return solution
return Y
if __name__ == "__main__":
print("Run Y = tsne.tsne(X, no_dims, perplexity) to perform t-SNE on your dataset.")
X = np.loadtxt(xfile)
X = torch.Tensor(X)
labels = np.loadtxt(yfile).tolist()
# confirm that x file get same number point than label file
# otherwise may cause error in scatter
assert(len(X[:, 0])==len(X[:,1]))
assert(len(X)==len(labels))
with torch.no_grad():
Y = tsne(X, 2, 50, 20.0)
if opt.cuda:
Y = Y.cpu().numpy()
# You may write result in two files
# print("Save Y values in file")
# Y1 = open("y1.txt", 'w')
# Y2 = open('y2.txt', 'w')
# for i in range(Y.shape[0]):
# Y1.write(str(Y[i,0])+"\n")
# Y2.write(str(Y[i,1])+"\n")
pyplot.scatter(Y[:, 0], Y[:, 1], 20, labels)
pyplot.show()
# X1 = torch.randn([10, 2048]).cuda()
# # no_dims=2, initial_dims=50, perplexity=30.0
# X_emb = tsne(X1, no_dims=2, perplexity=100., initial_dims=50)