Most recent releases are shown at the top. Each release shows:
- New: New classes, methods, functions, etc
- Changed: Additional paramaters, changes to inputs or outputs, etc
- Fixed: Bug fixes that don't change documented behaviour
Note that the top-most release is changes in the unreleased master branch on Github.
- New class
ImagePoints
for targets that are a set of point coordinates - New function
Image.predict(learn:Learner)
to get the activations of the model inLearner
for an image - New function
Learner.validate
to validate on a given dl (defaultvalid_dl
), with maybe new metrics or callbacks - New function
error_rate
which is just1-accuracy()
- New
~/fastai
home directory, config file~/.fastai/config.yml
, and default data directory~/.fastai/data
data
is now calledbasic_data
to avoid weird conflicts when naming our data objects data.- All vision models are now in the
models
module, including torchvision models (where tested and supported). So usemodels
instead oftvm
now. If your preferred torchvision model isn't imported, feel free to test it out and tell us on the forum if it works. And if it doesn't, a PR with a test and a fix would be appreciated! ImageBBox
is now a subclass ofImagePoints
- All metrics are now
Callback
. You can pass a regular function likeaccuracy
that will get averaged over batch or a fullCallback
that can do more complex things - All datasets convenience functions and paths are inside the
URLs
class URLs
that are a sample have name now suffixed with_SAMPLE
datasets.untar_data
anddatasets.download_data
will now download to fastai home directory~/.fastai/data
if the dataset does not already exist locally./data
.
- Fix
WeightDropout
in RNNs whenp=0
pad_collate
gets itskwargs
fromTextClasDataBunch
- Add small
eps
tostd
inTabularDataset
to avoid division by zero fit_one_cycle
doesn't take other callbacks- Many broken docs links fixed
- Last release without CHANGES updates
- First release