diff --git a/test_handcalcs/cell_10.py b/test_handcalcs/cell_10.py index cc81f66..e7f278f 100644 --- a/test_handcalcs/cell_10.py +++ b/test_handcalcs/cell_10.py @@ -5,4 +5,19 @@ eta = sqrt(1 / log10(6) / log(32)) kappa = floor(23 / 4.5) # Last comment +varepsilon = 45 + sin(34 + 2) / 2 # Comment +epsilon = sin(log2(log(3, 9))) +vartheta = sqrt(1 / log10(6) / log(32)) +theta = sqrt(1 / log10(6) / log(32)) +varpi = sqrt(1 / log10(6) / log(32)) +pi = sqrt(1 / log10(6) / log(32)) +varrho = sqrt(1 / log10(6) / log(32)) +rho = sqrt(1 / log10(6) / log(32)) +varsigma = sqrt(1 / log10(6) / log(32)) +sigma = sqrt(1 / log10(6) / log(32)) +varphi = sqrt(1 / log10(6) / log(32)) +phi = sqrt(1 / log10(6) / log(32)) + +Omega = varepsilon + epsilon + vartheta + theta + varpi + pi + varrho + rho + varsigma + sigma + varphi + phi + calc_results = globals() diff --git a/test_handcalcs/test_handcalcs_file.py b/test_handcalcs/test_handcalcs_file.py index 518fbac..da855eb 100644 --- a/test_handcalcs/test_handcalcs_file.py +++ b/test_handcalcs/test_handcalcs_file.py @@ -327,9 +327,8 @@ def test_integration(): ) assert ( cell_10_renderer.render(config_options=config_options) - == "\\[\n\\begin{aligned}\n\\mu &= 45 + \\frac{ \\sin \\left( 34 + 2 \\right) }{ 2 } &= 4.450 \\times 10 ^ {1} \\; \\;\\textrm{(Comment)}\n\\\\[10pt]\n\\tau &= \\sin \\left( \\log_{2} \\left( \\log_{9} \\left( 3 \\right) \\right) \\right) &= -8.415 \\times 10 ^ {-1} \n\\\\[10pt]\n\\eta &= \\sqrt { \\frac{ 1 }{ \\log_{10} \\left( 6 \\right) } \\cdot \\frac{1} { \\ln \\left( 32 \\right) } } &= 6.089 \\times 10 ^ {-1} \n\\\\[10pt]\n\\kappa &= \\left \\lfloor \\frac{ 23 }{ 4.5 } \\right \\rfloor &= 5 \\; \\;\\textrm{(Last comment)}\n\\end{aligned}\n\\]" + == '\\[\n\\begin{aligned}\n\\mu &= 45 + \\frac{ \\sin \\left( 34 + 2 \\right) }{ 2 } &= 4.450 \\times 10 ^ {1} \\; \\;\\textrm{(Comment)}\n\\\\[10pt]\n\\tau &= \\sin \\left( \\log_{2} \\left( \\log_{9} \\left( 3 \\right) \\right) \\right) &= -8.415 \\times 10 ^ {-1} \n\\\\[10pt]\n\\eta &= \\sqrt { \\frac{ 1 }{ \\log_{10} \\left( 6 \\right) } \\cdot \\frac{1} { \\ln \\left( 32 \\right) } } &= 6.089 \\times 10 ^ {-1} \n\\\\[10pt]\n\\kappa &= \\left \\lfloor \\frac{ 23 }{ 4.5 } \\right \\rfloor &= 5 \\; \\;\\textrm{(Last comment)}\n\\\\[10pt]\n\\varepsilon &= 45 + \\frac{ \\sin \\left( 34 + 2 \\right) }{ 2 } &= 4.450 \\times 10 ^ {1} \\; \\;\\textrm{(Comment)}\n\\\\[10pt]\n\\epsilon &= \\sin \\left( \\log_{2} \\left( \\log_{9} \\left( 3 \\right) \\right) \\right) &= -8.415 \\times 10 ^ {-1} \n\\\\[10pt]\n\\vartheta &= \\sqrt { \\frac{ 1 }{ \\log_{10} \\left( 6 \\right) } \\cdot \\frac{1} { \\ln \\left( 32 \\right) } } &= 6.089 \\times 10 ^ {-1} \n\\\\[10pt]\n\\theta &= \\sqrt { \\frac{ 1 }{ \\log_{10} \\left( 6 \\right) } \\cdot \\frac{1} { \\ln \\left( 32 \\right) } } &= 6.089 \\times 10 ^ {-1} \n\\\\[10pt]\n\\varpi &= \\sqrt { \\frac{ 1 }{ \\log_{10} \\left( 6 \\right) } \\cdot \\frac{1} { \\ln \\left( 32 \\right) } } &= 6.089 \\times 10 ^ {-1} \n\\\\[10pt]\n\\pi &= \\sqrt { \\frac{ 1 }{ \\log_{10} \\left( 6 \\right) } \\cdot \\frac{1} { \\ln \\left( 32 \\right) } } &= 6.089 \\times 10 ^ {-1} \n\\\\[10pt]\n\\varrho &= \\sqrt { \\frac{ 1 }{ \\log_{10} \\left( 6 \\right) } \\cdot \\frac{1} { \\ln \\left( 32 \\right) } } &= 6.089 \\times 10 ^ {-1} \n\\\\[10pt]\n\\rho &= \\sqrt { \\frac{ 1 }{ \\log_{10} \\left( 6 \\right) } \\cdot \\frac{1} { \\ln \\left( 32 \\right) } } &= 6.089 \\times 10 ^ {-1} \n\\\\[10pt]\n\\varsigma &= \\sqrt { \\frac{ 1 }{ \\log_{10} \\left( 6 \\right) } \\cdot \\frac{1} { \\ln \\left( 32 \\right) } } &= 6.089 \\times 10 ^ {-1} \n\\\\[10pt]\n\\sigma &= \\sqrt { \\frac{ 1 }{ \\log_{10} \\left( 6 \\right) } \\cdot \\frac{1} { \\ln \\left( 32 \\right) } } &= 6.089 \\times 10 ^ {-1} \n\\\\[10pt]\n\\varphi &= \\sqrt { \\frac{ 1 }{ \\log_{10} \\left( 6 \\right) } \\cdot \\frac{1} { \\ln \\left( 32 \\right) } } &= 6.089 \\times 10 ^ {-1} \n\\\\[10pt]\n\\phi &= \\sqrt { \\frac{ 1 }{ \\log_{10} \\left( 6 \\right) } \\cdot \\frac{1} { \\ln \\left( 32 \\right) } } &= 6.089 \\times 10 ^ {-1} \n\\\\[10pt]\n\\Omega &= \\varepsilon + \\epsilon + \\vartheta + \\theta + \\varpi + \\pi + \\varrho + \\rho + \\varsigma + \\sigma + \\varphi + \\phi \\\\&= 4.450 \\times 10 ^ {1} + -8.415 \\times 10 ^ {-1} + 6.089 \\times 10 ^ {-1} + 6.089 \\times 10 ^ {-1} + 6.089 \\times 10 ^ {-1} + 6.089 \\times 10 ^ {-1} + 6.089 \\times 10 ^ {-1} + 6.089 \\times 10 ^ {-1} + 6.089 \\times 10 ^ {-1} + 6.089 \\times 10 ^ {-1} + 6.089 \\times 10 ^ {-1} + 6.089 \\times 10 ^ {-1} \\\\&= 4.975 \\times 10 ^ {1} \\\\[10pt]\n\\end{aligned}\n\\]' ) - assert ( cell_11_renderer.render(config_options=config_options) == "\\[\n\\begin{aligned}\nF_{e_{x}} &= \\frac{ \\operatorname{euler\\ buckling\\ load} \\left( E ,\\ I_{x} ,\\ k_{x} ,\\ L \\right) }{ \\mathrm{area} } = \\frac{ \\operatorname{euler\\ buckling\\ load} \\left( 200000.000 ,\\ 300000000.000 ,\\ 1.000 ,\\ 3500 \\right) }{ 1000 } &= 4.500 \n\\\\[10pt]\nF_{e_{y}} &= \\frac{ \\operatorname{euler\\ buckling\\ load} \\left( E ,\\ I_{y} ,\\ k_{y} ,\\ L \\right) }{ \\mathrm{area} } = \\frac{ \\operatorname{euler\\ buckling\\ load} \\left( 200000.000 ,\\ 150000000.000 ,\\ 1.000 ,\\ 3500 \\right) }{ 1000 } &= 4.500 \n\\\\[10pt]\nF_{e} &= \\operatorname{min} \\left( F_{e_{x}} ,\\ F_{e_{y}} \\right) = \\operatorname{min} \\left( 4.500 ,\\ 4.500 \\right) &= 4.500 \n\\\\[10pt]\n\\lambda &= \\sqrt { \\frac{ f_{y} }{ F_{e} } } = \\sqrt { \\frac{ 350 }{ 4.500 } } &= 8.819 \n\\\\[10pt]\nP_{r} &= \\phi \\cdot \\mathrm{area} \\cdot f_{y} \\cdot \\left( 1 + \\left( \\lambda \\right) ^{ \\left( 2 \\cdot n \\right) } \\right) ^{ \\left( \\frac{ \\left( - 1 \\right) }{ n } \\right) } \\\\&= 0.900 \\cdot 1000 \\cdot 350 \\cdot \\left( 1 + \\left( 8.819 \\right) ^{ \\left( 2 \\cdot 1.340 \\right) } \\right) ^{ \\left( \\frac{ \\left( - 1 \\right) }{ 1.340 } \\right) } \\\\&= 4041.179 \\\\[10pt]\n\\end{aligned}\n\\]"