forked from meta-llama/llama-cookbook
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtraining.py
51 lines (48 loc) · 2.78 KB
/
training.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
# Copyright (c) Meta Platforms, Inc. and affiliates.
# This software may be used and distributed according to the terms of the Llama 2 Community License Agreement.
from dataclasses import dataclass
@dataclass
class train_config:
model_name: str="PATH/to/Model"
tokenizer_name: str=None
enable_fsdp: bool=False # shards model parameters, optimizer states and gradients across DDP ranks
low_cpu_fsdp: bool=False # saves cpu memory by loading pretrained model on rank0 only
run_validation: bool=True
batch_size_training: int=4
batching_strategy: str="packing" #alternative: padding
context_length: int=4096
gradient_accumulation_steps: int=1
gradient_clipping: bool = False
gradient_clipping_threshold: float = 1.0
num_epochs: int=3
max_train_step: int=0
max_eval_step: int=0
num_workers_dataloader: int=1
lr: float=1e-4
weight_decay: float=0.0
gamma: float= 0.85 # multiplicatively decay the learning rate by gamma after each epoch
seed: int=42
use_fp16: bool=False
mixed_precision: bool=True
val_batch_size: int=1
dataset = "samsum_dataset"
peft_method: str = "lora" # None, llama_adapter (Caution: llama_adapter is currently not supported with FSDP)
use_peft: bool=False # use parameter efficient fine tuning
from_peft_checkpoint: str="" # if not empty and use_peft=True, will load the peft checkpoint and resume the fine-tuning on that checkpoint
output_dir: str = "PATH/to/save/PEFT/model"
freeze_layers: bool = False
num_freeze_layers: int = 1
freeze_LLM_only: bool = False # Freeze self-attention layers in the language_model. Vision model, multi_modal_projector, cross-attention will be fine-tuned
quantization: str = None
one_gpu: bool = False
save_model: bool = True
dist_checkpoint_root_folder: str="PATH/to/save/FSDP/model" # will be used if using FSDP
dist_checkpoint_folder: str="fine-tuned" # will be used if using FSDP
save_optimizer: bool=False # will be used if using FSDP
use_fast_kernels: bool = False # Enable using SDPA from PyTroch Accelerated Transformers, make use Flash Attention and Xformer memory-efficient kernels
use_wandb: bool = False # Enable wandb for experient tracking
save_metrics: bool = False # saves training metrics to a json file for later plotting
flop_counter: bool = False # Enable flop counter to measure model throughput, can not be used with pytorch profiler at the same time.
flop_counter_start: int = 3 # The step to start profiling, default is 3, which means after 3 steps of warmup stage, the profiler will start to count flops.
use_profiler: bool = False # Enable pytorch profiler, can not be used with flop counter at the same time.
profiler_dir: str = "PATH/to/save/profiler/results" # will be used if using profiler