-
Notifications
You must be signed in to change notification settings - Fork 141
/
Copy pathQuantumComputer.py
2202 lines (2050 loc) · 87.2 KB
/
QuantumComputer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#!/usr/bin/env python
# Author: [email protected]
import numpy as np
import unittest
import re
import random
import itertools
from functools import reduce
from math import sqrt,pi,e,log
import time
####
## Gates
####
class Gate(object):
i_=np.complex(0,1)
## One qubit gates
# Hadamard gate
H=1./sqrt(2)*np.matrix('1 1; 1 -1')
# Pauli gates
X=np.matrix('0 1; 1 0')
Y=np.matrix([[0, -i_],[i_, 0]])
Z=np.matrix([[1,0],[0,-1]])
# Defined as part of the Bell state experiment
W=1/sqrt(2)*(X+Z)
V=1/sqrt(2)*(-X+Z)
# Other useful gates
eye=np.eye(2,2)
S=np.matrix([[1,0],[0,i_]])
Sdagger=np.matrix([[1,0],[0,-i_]]) # convenience Sdagger = S.conjugate().transpose()
T=np.matrix([[1,0],[0, e**(i_*pi/4.)]])
Tdagger=np.matrix([[1,0],[0, e**(-i_*pi/4.)]]) # convenience Tdagger= T.conjugate().transpose()
# TODO: for CNOT gates define programatically instead of the more manual way below
## Two qubit gates
# CNOT Gate (control is qubit 0, target qubit 1), this is the default CNOT gate
CNOT2_01=np.matrix('1 0 0 0; 0 1 0 0; 0 0 0 1; 0 0 1 0')
# control is qubit 1 target is qubit 0
CNOT2_10=np.kron(H,H)*CNOT2_01*np.kron(H,H) #=np.matrix('1 0 0 0; 0 0 0 1; 0 0 1 0; 0 1 0 0')
# operates on 2 out of 3 entangled qubits, control is first subscript, target second
CNOT3_01=np.kron(CNOT2_01,eye)
CNOT3_10=np.kron(CNOT2_10,eye)
CNOT3_12=np.kron(eye,CNOT2_01)
CNOT3_21=np.kron(eye,CNOT2_10)
CNOT3_02=np.matrix('1 0 0 0 0 0 0 0; 0 1 0 0 0 0 0 0; 0 0 1 0 0 0 0 0; 0 0 0 1 0 0 0 0; 0 0 0 0 0 1 0 0; 0 0 0 0 1 0 0 0; 0 0 0 0 0 0 0 1; 0 0 0 0 0 0 1 0')
CNOT3_20=np.matrix('1 0 0 0 0 0 0 0; 0 0 0 0 0 1 0 0; 0 0 1 0 0 0 0 0; 0 0 0 0 0 0 0 1; 0 0 0 0 1 0 0 0; 0 1 0 0 0 0 0 0; 0 0 0 0 0 0 1 0; 0 0 0 1 0 0 0 0')
# operates on 2 out of 4 entangled qubits, control is first subscript, target second
CNOT4_01=np.kron(CNOT3_01,eye)
CNOT4_10=np.kron(CNOT3_10,eye)
CNOT4_12=np.kron(CNOT3_12,eye)
CNOT4_21=np.kron(CNOT3_21,eye)
CNOT4_13=np.kron(eye,CNOT3_02)
CNOT4_31=np.kron(eye,CNOT3_20)
CNOT4_02=np.kron(CNOT3_02,eye)
CNOT4_20=np.kron(CNOT3_20,eye)
CNOT4_23=np.kron(eye,CNOT3_12)
CNOT4_32=np.kron(eye,CNOT3_21)
CNOT4_03=np.eye(16,16)
CNOT4_03[np.array([8,9])]=CNOT4_03[np.array([9,8])]
CNOT4_03[np.array([10,11])]=CNOT4_03[np.array([11,10])]
CNOT4_03[np.array([12,13])]=CNOT4_03[np.array([13,12])]
CNOT4_03[np.array([14,15])]=CNOT4_03[np.array([15,14])]
CNOT4_30=np.eye(16,16)
CNOT4_30[np.array([1,9])]=CNOT4_30[np.array([9,1])]
CNOT4_30[np.array([3,11])]=CNOT4_30[np.array([11,3])]
CNOT4_30[np.array([5,13])]=CNOT4_30[np.array([13,5])]
CNOT4_30[np.array([7,15])]=CNOT4_30[np.array([15,7])]
# operates on 2 out of 5 entangled qubits, control is first subscript, target second
CNOT5_01=np.kron(CNOT4_01,eye)
CNOT5_10=np.kron(CNOT4_10,eye)
CNOT5_02=np.kron(CNOT4_02,eye)
CNOT5_20=np.kron(CNOT4_20,eye)
CNOT5_03=np.kron(CNOT4_03,eye)
CNOT5_30=np.kron(CNOT4_30,eye)
CNOT5_12=np.kron(CNOT4_12,eye)
CNOT5_21=np.kron(CNOT4_21,eye)
CNOT5_13=np.kron(CNOT4_13,eye)
CNOT5_31=np.kron(CNOT4_31,eye)
CNOT5_14=np.kron(eye,CNOT4_03)
CNOT5_41=np.kron(eye,CNOT4_30)
CNOT5_23=np.kron(CNOT4_23,eye)
CNOT5_32=np.kron(CNOT4_32,eye)
CNOT5_24=np.kron(eye,CNOT4_13)
CNOT5_42=np.kron(eye,CNOT4_31)
CNOT5_34=np.kron(eye,CNOT4_23)
CNOT5_43=np.kron(eye,CNOT4_32)
CNOT5_04=np.eye(32,32)
CNOT5_04[np.array([16,17])]=CNOT5_04[np.array([17,16])]
CNOT5_04[np.array([18,19])]=CNOT5_04[np.array([19,18])]
CNOT5_04[np.array([20,21])]=CNOT5_04[np.array([21,20])]
CNOT5_04[np.array([22,23])]=CNOT5_04[np.array([23,22])]
CNOT5_04[np.array([24,25])]=CNOT5_04[np.array([25,24])]
CNOT5_04[np.array([26,27])]=CNOT5_04[np.array([27,26])]
CNOT5_04[np.array([28,29])]=CNOT5_04[np.array([29,28])]
CNOT5_04[np.array([30,31])]=CNOT5_04[np.array([31,30])]
CNOT5_40=np.eye(32,32)
CNOT5_40[np.array([1,17])]=CNOT5_40[np.array([17,1])]
CNOT5_40[np.array([3,19])]=CNOT5_40[np.array([19,3])]
CNOT5_40[np.array([5,21])]=CNOT5_40[np.array([21,5])]
CNOT5_40[np.array([7,23])]=CNOT5_40[np.array([23,7])]
CNOT5_40[np.array([9,25])]=CNOT5_40[np.array([25,9])]
CNOT5_40[np.array([11,27])]=CNOT5_40[np.array([27,11])]
CNOT5_40[np.array([13,29])]=CNOT5_40[np.array([29,13])]
CNOT5_40[np.array([15,31])]=CNOT5_40[np.array([31,15])]
####
## States
####
class State(object):
i_=np.complex(0,1)
## One qubit states (basis)
# standard basis (z)
zero_state=np.matrix('1; 0')
one_state=np.matrix('0; 1')
# diagonal basis (x)
plus_state=1/sqrt(2)*np.matrix('1; 1')
minus_state=1/sqrt(2)*np.matrix('1; -1')
# circular basis (y)
plusi_state=1/sqrt(2)*np.matrix([[1],[i_]]) # also known as clockwise arrow state
minusi_state=1/sqrt(2)*np.matrix([[1],[-i_]]) # also known as counterclockwise arrow state
# 2-qubit states
bell_state=1/sqrt(2)*np.matrix('1; 0; 0; 1')
@staticmethod
def change_to_x_basis(state):
return Gate.H*state
@staticmethod
def change_to_y_basis(state):
return Gate.H*Gate.Sdagger*state
@staticmethod
def change_to_w_basis(state):
# W=1/sqrt(2)*(X+Z)
return Gate.H*Gate.T*Gate.H*Gate.S*state
@staticmethod
def change_to_v_basis(state):
# V=1/sqrt(2)*(-X+Z)
return Gate.H*Gate.Tdagger*Gate.H*Gate.S*state
@staticmethod
def is_fully_separable(qubit_state):
try:
separated_state=State.separate_state(qubit_state)
for state in separated_state:
State.string_from_state(state)
return True
except StateNotSeparableException as e:
return False
@staticmethod
def get_first_qubit(qubit_state):
return State.separate_state(qubit_state)[0]
@staticmethod
def get_second_qubit(qubit_state):
return State.separate_state(qubit_state)[1]
@staticmethod
def get_third_qubit(qubit_state):
return State.separate_state(qubit_state)[2]
@staticmethod
def get_fourth_qubit(qubit_state):
return State.separate_state(qubit_state)[3]
@staticmethod
def get_fifth_qubit(qubit_state):
return State.separate_state(qubit_state)[4]
@staticmethod
def all_state_strings(n_qubits):
return [''.join(map(str,state_desc)) for state_desc in itertools.product([0, 1], repeat=n_qubits)]
@staticmethod
def state_from_string(qubit_state_string):
if not all(x in '01' for x in qubit_state_string):
raise Exception("Description must be a string in binary")
state=None
for qubit in qubit_state_string:
if qubit=='0':
new_contrib=State.zero_state
elif qubit=='1':
new_contrib=State.one_state
if state is None:
state=new_contrib
else:
state=np.kron(state,new_contrib)
return state
@staticmethod
def string_from_state(qubit_state):
separated=State.separate_state(qubit_state)
desc=''
for state in separated:
if np.allclose(state,State.zero_state):
desc+='0'
elif np.allclose(state,State.one_state):
desc+='1'
else:
raise StateNotSeparableException("State is not separable")
return desc
@staticmethod
def separate_state(qubit_state):
"""This only works if the state is fully separable at present
Throws exception if not a separable state"""
n_entangled=QuantumRegister.num_qubits(qubit_state)
if list(qubit_state.flat).count(1)==1:
separated_state=[]
idx_state=list(qubit_state.flat).index(1)
add_factor=0
size=qubit_state.shape[0]
while(len(separated_state)<n_entangled):
size=size/2
if idx_state<(add_factor+size):
separated_state+=[State.zero_state]
add_factor+=0
else:
separated_state+=[State.one_state]
add_factor+=size
return separated_state
else:
# Try a few naive separations before giving up
cardinal_states=[State.zero_state,State.one_state,State.plus_state,State.minus_state,State.plusi_state,State.minusi_state]
for separated_state in itertools.product(cardinal_states, repeat=n_entangled):
candidate_state=reduce(lambda x,y:np.kron(x,y),separated_state)
if np.allclose(candidate_state,qubit_state):
return separated_state
# TODO: more general separation methods
raise StateNotSeparableException("TODO: Entangled qubits not represented yet in quantum computer implementation. Can currently do manual calculations; see TestBellState for Examples")
@staticmethod
def measure(state):
"""finally some probabilities, whee. To properly use, set the qubit you measure to the result of this function
to collapse it. state=measure(state). Currently supports only up to three entangled qubits """
state_z=state
n_qubits=QuantumRegister.num_qubits(state)
probs=Probability.get_probabilities(state_z)
rand=random.random()
for idx,state_desc in enumerate(State.all_state_strings(n_qubits)):
if rand < sum(probs[0:(idx+1)]):
return State.state_from_string(state_desc)
@staticmethod
def get_bloch(state):
return np.array((Probability.expectation_x(state),Probability.expectation_y(state),Probability.expectation_z(state)))
@staticmethod
def pretty_print_gate_action(gate,n_qubits):
for s in list(itertools.product([0,1], repeat=n_qubits)):
sname=('%d'*n_qubits)%s
state=State.state_from_string(sname)
print(sname,'->',State.string_from_state(gate*state))
class StateNotSeparableException(Exception):
def __init__(self,args=None):
self.args=args
class Probability(object):
@staticmethod
def get_probability(coeff):
return (coeff*coeff.conjugate()).real
@staticmethod
def get_probabilities(state):
return [Probability.get_probability(x) for x in state.flat]
@staticmethod
def get_correlated_expectation(state):
probs=Probability.get_probabilities(state)
return probs[0]+probs[3]-probs[1]-probs[2]
@staticmethod
def pretty_print_probabilities(state):
probs=Probability.get_probabilities(state)
am_desc='|psi>='
pr_desc=''
for am,pr,state_desc in zip(state.flat,probs,State.all_state_strings(QuantumRegister.num_qubits(state))):
if am!=0:
if am!=1:
am_desc+='%r|%s>+'%(am,state_desc)
else:
am_desc+='|%s>+'%(state_desc)
if pr!=0:
pr_desc+='Pr(|%s>)=%f; '%(state_desc,pr)
print(am_desc[0:-1])
print(pr_desc)
if state.shape==(4,1):
print("<state>=%f" % float(probs[0]+probs[3]-probs[1]-probs[2]))
@staticmethod
def expectation_x(state):
state_x=State.change_to_x_basis(state)
prob_zero_state=(state_x.item(0)*state_x.item(0).conjugate()).real
prob_one_state=(state_x.item(1)*state_x.item(1).conjugate()).real
return prob_zero_state-prob_one_state
@staticmethod
def expectation_y(state):
state_y=State.change_to_y_basis(state)
prob_zero_state=(state_y.item(0)*state_y.item(0).conjugate()).real
prob_one_state=(state_y.item(1)*state_y.item(1).conjugate()).real
return prob_zero_state-prob_one_state
@staticmethod
def expectation_z(state):
state_z=state
prob_zero_state=(state_z.item(0)*state_z.item(0).conjugate()).real
prob_one_state=(state_z.item(1)*state_z.item(1).conjugate()).real
return prob_zero_state-prob_one_state
class QuantumRegister(object):
def __init__(self,name,state=State.zero_state,entangled=None):
self._entangled=[self]
self._state=state
self.name = name
self.idx=None
self._noop = [] # after a measurement set this so that we can allow no further operations. Set to Bloch coords if bloch operation performed
@staticmethod
def num_qubits(state):
num_qubits=log(state.shape[0],2)
if state.shape[1]!=1 or num_qubits not in [1,2,3,4,5]:
raise Exception("unrecognized state shape")
else:
return int(num_qubits)
def get_entangled(self):
return self._entangled
def set_entangled(self,entangled):
self._entangled=entangled
for qb in self._entangled:
qb._state=self._state
qb._entangled=self._entangled
def get_state(self):
return self._state
def set_state(self,state):
self._state=state
for qb in self._entangled:
qb._state=state
qb._entangled=self._entangled
qb._noop=self._noop
def get_noop(self):
return self._noop
def set_noop(self,noop):
self._noop=noop
for qb in self._entangled:
qb._noop=noop
def is_entangled(self):
return len(self._entangled)>1
def is_entangled_with(self,qubit):
return qubit in self._entangled
def get_indices(self,target_qubit):
if not self.is_entangled_with(target_qubit):
search=self._entangled+target_qubit.get_entangled()
else:
search=self._entangled
return search.index(self),search.index(target_qubit)
def get_num_qubits(self):
return QuantumRegister.num_qubits(self._state)
def __eq__(self,other):
if not isinstance(other, type(self)): return NotImplemented
return self.name==other.name and np.array(self._noop).shape==np.array(other._noop).shape and np.allclose(self._noop,other._noop) and np.array(self.get_state()).shape== np.array(other.get_state()).shape and np.allclose(self.get_state(),other.get_state()) and QuantumRegisterCollection.orderings_equal(self._entangled,other._entangled)
class QuantumRegisterSet(object):
"""Created this so I could have some set like features for use, even though QuantumRegisters are mutable"""
registers=[]
def __init__(self,registers):
for r in registers:
if r not in self.registers:
self.registers+=[r]
def intersection(self,quantumregisterset):
intersection=[]
if self.size()>=quantumregisterset:
qrs1=self
qrs2=quantumregisterset
else:
qrs1=quantumregisterset
qrs2=self
# now qrs2 is the smaller set
intersection=[qr for qr in qrs1 if qr in qrs2]
return QuantumRegisterSet(intersection)
def size(self):
return len(self.registers)
class QuantumRegisterCollection(object):
def __init__(self,qubits):
self._qubits=qubits
for idx,qb in enumerate(self._qubits):
qb.idx = idx
self.num_qubits=len(qubits)
def get_quantum_register_containing(self,name):
for qb in self._qubits:
if qb.name == name:
return qb
else:
for entqb in qb.get_entangled():
if entqb.name==name:
return entqb
raise Exception("qubit %s not found in %s" % (name,repr(self._qubits)))
def get_quantum_registers(self):
return self._qubits
def entangle_quantum_registers(self,first_qubit,second_qubit):
new_entangle=first_qubit.get_entangled()+second_qubit.get_entangled()
if len(first_qubit.get_entangled()) >= len(second_qubit.get_entangled()):
self._remove_quantum_register_named(second_qubit.name)
first_qubit.set_entangled(new_entangle)
else:
self._remove_quantum_register_named(first_qubit.name)
second_qubit.set_entangled(new_entangle)
def _remove_quantum_register_named(self,name):
self._qubits=[qb for qb in self._qubits if qb.name!=name]
def is_in_canonical_ordering(self):
return self.get_qubit_order()==list(range(self.num_qubits))
@staticmethod
def is_in_increasing_order(qb_list):
for a,b in zip(qb_list,qb_list[1:]):
if not a.idx<b.idx:
return False
return True
def get_entangled_qubit_order(self):
ordering=[]
for qb in self._qubits:
ent_order=[]
for ent in qb.get_entangled():
ent_order+=[ent]
ordering+=[ent_order]
return ordering
def get_qubit_order(self):
ordering=[]
for qb in self._qubits:
for ent in qb.get_entangled():
ordering+=[ent.idx]
return ordering
def add_quantum_register(self,qubit):
qubit.idx=self.num_qubits
self._qubits+=[qubit]
self.num_qubits+=1
@staticmethod
def orderings_equal(order_one,order_two):
return [qb.idx for qb in order_one] == [qb.idx for qb in order_two]
class QuantumComputer(object):
"""This class is meant to simulate the 5-qubit IBM quantum computer,
and be able to interpret the auto generated programs on the site.
For entangled states, qubits are always reported in alphanumerical order
"""
def __init__(self):
self.qubits=QuantumRegisterCollection([QuantumRegister("q0"),QuantumRegister("q1"),QuantumRegister("q2"),QuantumRegister("q3"),QuantumRegister("q4")])
def reset(self):
self.qubits=QuantumRegisterCollection([QuantumRegister("q0"),QuantumRegister("q1"),QuantumRegister("q2"),QuantumRegister("q3"),QuantumRegister("q4")])
def get_ordering(self):
return self.qubits.get_qubit_order()
def is_in_canonical_ordering(self):
return self.qubits.is_in_canonical_ordering()
def get_requested_state_order(self,name):
get_states_for=[self.qubits.get_quantum_register_containing(x.strip()) for x in name.split(',')]
if not QuantumRegisterCollection.is_in_increasing_order(get_states_for):
raise Exception("at this time, requested qubits must be in increasing order")
entangled_qubit_order=self.qubits.get_entangled_qubit_order()
# # We know the idxs run range(5)
# # We know if the idxs are contiguous, increasing we are good
for get_state_for_qb in get_states_for:
for eqb in entangled_qubit_order:
eqo=[q.idx for q in eqb]
# We know if the idxs are missing a number AND we want to find an idx that lies in there, we must entangle those states
if not get_state_for_qb.idx in eqo and get_state_for_qb.idx in range(min(eqo),max(eqo)+1):
print("We'll have to entangle the two")
# We'll have to entangle the two
qb1=self.qubits.get_quantum_register_containing(eqo[0].name)
get_state_for_qb.set_state(np.kron(qb.get_state(),qb1.get_state()))
self.qubits.entangle_quantum_registers(get_state_for_qb,qb1)
return self.qubit_states_equal(name,state)
# OK, if we reach here, we have all the entanglement we need, and we just need to sort the individual entangled states to match the output order
for qubit in self.qubits.get_quantum_registers():
if not QuantumRegisterCollection.is_in_increasing_order(qubit.get_entangled()): # all one apart
# We're not in order
# We need to assert that the full return can be comprised of concatenating states from beginning to end without extras
if not QuantumRegisterSet(qubit.get_entangled()).size()<=QuantumRegisterSet(get_states_for).size() and QuantumRegisterSet(qubit.get_entangled()).intersection(QuantumRegisterSet(get_states_for)).size():
raise Exception("With this entanglement setup we can't fully separate out just the qubits of iterest. Try measuring more bits")
# We only care if we actually want to return something from this state Put eqo in order then
# We want a sorting algorithm that easily maps to matrix operations, since we only have 5 elements max
# we'll use bubble sort
swapped=True
n=len(qubit.get_entangled())
while(swapped):
swapped=False
current_entangled=qubit.get_entangled()
for idx in range(len(current_entangled)-1):
first_qubit=current_entangled[idx]
second_qubit=current_entangled[idx+1]
if first_qubit.idx > second_qubit.idx:
current_entangled[idx]=second_qubit
current_entangled[idx+1]=first_qubit
permute=np.eye(2**n,2**n)
all_combos=list(itertools.product([0,1],repeat=n))
already_swapped=[]
for icombo,combo in enumerate(all_combos[:len(all_combos)]):
new_combo=list(combo)
new_combo[idx]=combo[idx+1]
new_combo[idx+1]=combo[idx]
new_combo=tuple(new_combo)
if combo!=new_combo:
inew_combo=all_combos.index(new_combo)
swapset=set([icombo,inew_combo])
if not swapset in already_swapped:
already_swapped+=[swapset]
permute[np.array([icombo,inew_combo])]=permute[np.array([inew_combo,icombo])]
first_qubit.set_entangled(current_entangled)
first_qubit.set_state(permute*first_qubit.get_state())
swapped=True
# OK, if we reach here, everything is in order, and entangled states are either all of interest or none are of interest we just need to return it!
answer_state=None
for qb in self.qubits.get_quantum_registers():
if QuantumRegisterSet(qb.get_entangled()).size() <= QuantumRegisterSet(get_states_for).size():
if answer_state is None:
answer_state=qb.get_state()
else:
answer_state=np.kron(answer_state,qb.get_state())
return answer_state
def probabilities_equal(self,name,prob):
get_states_for=[self.qubits.get_quantum_register_containing(x.strip()) for x in name.split(',')]
if not QuantumRegisterCollection.is_in_increasing_order(get_states_for):
raise Exception("at this time, requested qubits must be in increasing order")
entangled_qubit_order=self.qubits.get_entangled_qubit_order()
if (len(get_states_for)==1 and self.is_in_canonical_ordering()) or ([x.name for x in get_states_for] in [[x.name for x in l] for l in entangled_qubit_order]):
return np.allclose(Probability.get_probabilities(get_states_for[0].get_state()),prob)
else:
answer_state=self.get_requested_state_order(name)
return np.allclose(Probability.get_probabilities(answer_state),prob,atol=1e-2)
def qubit_states_equal(self,name,state):
get_states_for=[self.qubits.get_quantum_register_containing(x.strip()) for x in name.split(',')]
if not QuantumRegisterCollection.is_in_increasing_order(get_states_for):
raise Exception("at this time, requested qubits must be in increasing order")
entangled_qubit_order=self.qubits.get_entangled_qubit_order()
if (len(get_states_for)==1 and self.is_in_canonical_ordering()) or (get_states_for in entangled_qubit_order):
return np.allclose(get_states_for[0].get_state(),state)
else:
answer_state=self.get_requested_state_order(name)
return np.allclose(answer_state,state)
def bloch_coords_equal(self,name,coords):
on_qubit=self.qubits.get_quantum_register_containing(name)
if self.is_in_canonical_ordering() and not on_qubit.is_entangled():
return np.allclose(on_qubit.get_noop(),coords,atol=1e-3)
else:
try:
separated_qubit=State.separate_state(on_qubit.get_state())
on_qubit_idx=(on_qubit.get_entangled()).index(on_qubit)
return np.allclose(State.get_bloch(separated_qubit[on_qubit_idx]),coords,atol=1e-3)
except StateNotSeparableException as e:
raise Exception("Entangled measurements that cannot be separatednot yet implemented for bloch sphere")
def apply_gate(self,gate,on_qubit_name):
on_qubit=self.qubits.get_quantum_register_containing(on_qubit_name)
if len(on_qubit.get_noop()) > 0:
print("NOTE this qubit has been measured previously, there should be no more gates allowed but we are reverting that measurement for consistency with IBM's language")
on_qubit.set_state(on_qubit.get_noop())
on_qubit.set_noop([])
if not on_qubit.is_entangled():
if on_qubit.get_num_qubits()!=1:
raise Exception("This qubit is not marked as entangled but it has an entangled state")
on_qubit.set_state(gate*on_qubit.get_state())
else:
if not on_qubit.get_num_qubits()>1:
raise Exception("This qubit is marked as entangled but it does not have an entangled state")
n_entangled=len(on_qubit.get_entangled())
apply_gate_to_qubit_idx=[qb.name for qb in on_qubit.get_entangled()].index(on_qubit_name)
if apply_gate_to_qubit_idx==0:
entangled_gate=gate
else:
entangled_gate=Gate.eye
for i in range(1,n_entangled):
if apply_gate_to_qubit_idx==i:
entangled_gate=np.kron(entangled_gate,gate)
else:
entangled_gate=np.kron(entangled_gate,Gate.eye)
on_qubit.set_state(entangled_gate*on_qubit.get_state())
def apply_two_qubit_gate_CNOT(self,first_qubit_name,second_qubit_name):
""" Should work for all combination of qubits"""
first_qubit=self.qubits.get_quantum_register_containing(first_qubit_name)
second_qubit=self.qubits.get_quantum_register_containing(second_qubit_name)
if len(first_qubit.get_noop())>0 or len(second_qubit.get_noop())>0:
raise Exception("Control or target qubit has been measured previously, no more gates allowed")
if not first_qubit.is_entangled() and not second_qubit.is_entangled():
combined_state=np.kron(first_qubit.get_state(),second_qubit.get_state())
if first_qubit.get_num_qubits()!=1 or second_qubit.get_num_qubits()!=1:
raise Exception("Both qubits are marked as not entangled but one or the other has an entangled state")
new_state=Gate.CNOT2_01*combined_state
if State.is_fully_separable(new_state):
second_qubit.set_state(State.get_second_qubit(new_state))
else:
self.qubits.entangle_quantum_registers(first_qubit,second_qubit)
first_qubit.set_state(new_state)
else:
if not first_qubit.is_entangled_with(second_qubit):
# Entangle the state
combined_state=np.kron(first_qubit.get_state(),second_qubit.get_state())
self.qubits.entangle_quantum_registers(first_qubit,second_qubit)
else:
# We are ready to do the operation
combined_state=first_qubit.get_state()
# Time for more meta programming!
# Select gate based on indices
control_qubit_idx,target_qubit_idx=first_qubit.get_indices(second_qubit)
gate_size=QuantumRegister.num_qubits(combined_state)
try:
namespace=locals()
exec('gate=Gate.CNOT%d_%d%d' %(gate_size,control_qubit_idx,target_qubit_idx),globals(),namespace)
gate=namespace['gate']
except:
print('gate=Gate.CNOT%d_%d%d' %(gate_size,control_qubit_idx,target_qubit_idx))
raise Exception("Unrecognized combination of number of qubits")
first_qubit.set_state(gate*combined_state)
def bloch(self,qubit_name):
on_qubit=self.qubits.get_quantum_register_containing(qubit_name)
if len(on_qubit.get_noop())==0:
if not on_qubit.is_entangled():
on_qubit.set_noop(State.get_bloch(on_qubit.get_state()))
else:
on_qubit.set_noop([1])
def measure(self,qubit_name):
on_qubit=self.qubits.get_quantum_register_containing(qubit_name)
if len(on_qubit.get_noop())==0:
on_qubit.set_noop(on_qubit.get_state()) # state before measurement for testing
on_qubit.set_state(State.measure(on_qubit.get_state()))
def execute(self,program):
"""Time for some very lazy meta programming!
"""
# Transforming IBM's language to my variables
lines=program.split(';')
translation=[
['q[0]','"q0"'],
['q[1]','"q1"'],
['q[2]','"q2"'],
['q[3]','"q3"'],
['q[4]','"q4"'],
['bloch ',r'self.bloch('],
['measure ',r'self.measure('],
['id ','self.apply_gate(Gate.eye,'],
['sdg ','self.apply_gate(Gate.Sdagger,'],
['tdg ','self.apply_gate(Gate.Tdagger,'],
['h ','self.apply_gate(Gate.H,'],
['t ','self.apply_gate(Gate.T,'],
['s ','self.apply_gate(Gate.S,'],
['x ','self.apply_gate(Gate.X,'],
['y ','self.apply_gate(Gate.Y,'],
['z ','self.apply_gate(Gate.Z,'],
]
cnot_re=re.compile('^cx (q\[[0-4]\]), (q\[[0-4]\])$')
for l in lines:
l=l.strip()
if not l: continue
# CNOT operates on two qubits so gets special processing
cnot=cnot_re.match(l)
if cnot:
control_qubit=cnot.group(1)
target_qubit=cnot.group(2)
l='self.apply_two_qubit_gate_CNOT(%s,%s'%(control_qubit,target_qubit)
for k,v in translation:
l=l.replace(k,v)
l=l+')'
# Now running the code
exec(l,globals(),locals())
class Program(object):
def __init__(self,code,result_probability=[],bloch_vals=()):
self.code=code
self.result_probability=result_probability
self.bloch_vals=bloch_vals
class Programs(object):
"""Some useful programs collected in one place for running on the quantum computer class"""
program_blue_state=Program("""h q[1];
t q[1];
h q[1];
t q[1];
h q[1];
t q[1];
s q[1];
h q[1];
t q[1];
h q[1];
t q[1];
s q[1];
h q[1];
bloch q[1];""")
program_test_XYZMeasureIdSdagTdag=Program("""sdg q[0];
x q[1];
x q[2];
id q[3];
z q[4];
tdg q[0];
y q[4];
measure q[0];
measure q[1];
measure q[2];
measure q[3];
measure q[4];""")
program_test_cnot=Program("""x q[1];
cx q[1], q[2];""")
program_test_many=Program("""sdg q[0];
x q[1];
x q[2];
id q[3];
z q[4];
tdg q[0];
cx q[1], q[2];
y q[4];
measure q[0];
measure q[1];
measure q[2];
measure q[3];
measure q[4];""")
# IBM Tutorial Section III, Page 4
program_zz=Program("""h q[1];
cx q[1], q[2];
measure q[1];
measure q[2];""") # "00",0.5; "11",0.5 # <zz> = 2
program_zw=Program("""h q[1];
cx q[1], q[2];
s q[2];
h q[2];
t q[2];
h q[2];
measure q[1];
measure q[2]""") # "00",0.426777; "01",0.073223; "10",0.073223; "11",0.426777 # <zw> = 1/sqrt(2)
program_zv=Program("""h q[1];
cx q[1], q[2];
s q[2];
h q[2];
tdg q[2];
h q[2];
measure q[1];
measure q[2];""") #"00",0.426777; "01",0.073223; "10",0.073223; "11",0.426777 # <zv> = 1/sqrt(2)
program_xw=Program("""h q[1];
cx q[1], q[2];
h q[1];
s q[2];
h q[2];
t q[2];
h q[2];
measure q[1];
measure q[2];""") # "00",0.426777; "01",0.073223; "10",0.073223; "11",0.426777 # <xw> =
program_xv=Program("""h q[1];
cx q[1], q[2];
h q[1];
s q[2];
h q[2];
tdg q[2];
h q[2];
measure q[1];
measure q[2];""") #"00",0.073223; "01",0.426777; "10",0.426777; "11",0.073223; # <xv> =
# Currently not used, but creats a superposition of 00 and 01
program_00_01_super=Program("""sdg q[1];
t q[1];
t q[1];
s q[1];
h q[1];
h q[0];
h q[1];
h q[0];
h q[1];
cx q[0], q[1];
measure q[0];
measure q[1];""")
# IBM Tutorial Section III, Page 5
program_ghz=Program("""h q[0];
h q[1];
x q[2];
cx q[1], q[2];
cx q[0], q[2];
h q[0];
h q[1];
h q[2];
measure q[0];
measure q[1];
measure q[2];""",result_probability=[0.5,0,0,0,0,0,0,0.5])# "000":0.5; "111":0.5
program_ghz_measure_yyx=Program("""h q[0];
h q[1];
x q[2];
cx q[1], q[2];
cx q[0], q[2];
h q[0];
h q[1];
h q[2];
sdg q[0];
sdg q[1];
h q[2];
h q[0];
h q[1];
measure q[2];
measure q[0];
measure q[1];""",result_probability=[0.25,0,0,0.25,0,0.25,0.25,0]) # "000":0.25; "011": 0.25; "101": 0.25; "110":0.25
program_ghz_measure_yxy=Program("""h q[0];
h q[1];
x q[2];
cx q[1], q[2];
cx q[0], q[2];
h q[0];
h q[1];
h q[2];
sdg q[0];
h q[1];
sdg q[2];
h q[0];
measure q[1];
h q[2];
measure q[0];
measure q[2];""",result_probability=[0.25,0,0,0.25,0,0.25,0.25,0]) # "000":0.25; "011": 0.25; "101": 0.25; "110":0.25
program_ghz_measure_xyy=Program("""h q[0];
h q[1];
x q[2];
cx q[1], q[2];
cx q[0], q[2];
h q[0];
h q[1];
h q[2];
h q[0];
sdg q[1];
sdg q[2];
measure q[0];
h q[1];
h q[2];
measure q[1];
measure q[2];""",result_probability=[0.25,0,0,0.25,0,0.25,0.25,0]) # "000":0.25; "011": 0.25; "101": 0.25; "110":0.25
program_ghz_measure_xxx=Program("""h q[0];
h q[1];
x q[2];
cx q[1], q[2];
cx q[0], q[2];
h q[0];
h q[1];
h q[2];
h q[0];
h q[1];
h q[2];
measure q[0];
measure q[1];
measure q[2];""",result_probability=[0,0.25,0.25,0,0.25,0,0,0.25]) #"001":0.25; "010": 0.25; "100": 0.25; "111":0.25
# IBM Tutorial Section IV, Page 1
program_reverse_cnot=Program("""x q[2];
h q[1];
h q[2];
cx q[1], q[2];
h q[1];
h q[2];
measure q[1];
measure q[2];""",result_probability=(0.0,0.0,0.0,1.0))# "11": 1.0
program_swap=Program("""x q[2];
cx q[1], q[2];
h q[1];
h q[2];
cx q[1], q[2];
h q[1];
h q[2];
cx q[1], q[2];
measure q[1];
measure q[2];""",result_probability=(0.0,0.0,1.0,0.0)) # "10": 1.0
program_swap_q0_q1=Program("""h q[0];
cx q[0], q[2];
h q[0];
h q[2];
cx q[0], q[2];
h q[0];
h q[2];
cx q[0], q[2];
cx q[1], q[2];
h q[1];
h q[2];
cx q[1], q[2];
h q[1];
h q[2];
cx q[1], q[2];
cx q[0], q[2];
h q[0];
h q[2];
cx q[0], q[2];
h q[0];
h q[2];
cx q[0], q[2];
bloch q[0];
bloch q[1];
bloch q[2];""",bloch_vals=((0,0,1),(1,0,0),(0,0,1),None,None)) # Bloch q0: (0,0,1); #q1: (1,0,0) q2: (0,0,1)
program_controlled_hadamard=Program("""h q[1];
s q[1];
h q[2];
sdg q[2];
cx q[1], q[2];
h q[2];
t q[2];
cx q[1], q[2];
t q[2];
h q[2];
s q[2];
x q[2];
measure q[1];
measure q[2];""",result_probability=[0.5,0.0,0.25,0.25]) # "00": 0.5; "10": 0.25; "11":0.25
program_approximate_sqrtT=Program("""h q[0];
h q[1];
h q[2];
h q[3];
h q[4];
bloch q[0];
h q[1];
t q[2];
s q[3];
z q[4];
t q[1];
bloch q[2];
bloch q[3];
bloch q[4];
h q[1];
t q[1];
h q[1];
t q[1];
s q[1];
h q[1];
t q[1];
h q[1];
t q[1];
s q[1];
h q[1];
t q[1];
h q[1];
t q[1];
h q[1];
bloch q[1];""",bloch_vals=((1,0,0),(0.927, 0.375, 0.021), (0.707, 0.707, 0.000),(0.000, 1.000, 0.000), (-1.000, 0.000, 0.000))) #Bloch coords q0: (1.000, 0.000, 0.000) q1: (0.927, 0.375, 0.021) q2: (0.707, 0.707, 0.000) q3: (0.000, 1.000, 0.000) q4: (-1.000, 0.000, 0.000) # checks out when we manually get_bloch
program_toffoli_state=Program("""h q[0];
h q[1];
h q[2];
cx q[1], q[2];
tdg q[2];
cx q[0], q[2];
t q[2];
cx q[1], q[2];
tdg q[2];
cx q[0], q[2];
t q[1];
t q[2];
cx q[1], q[2];
h q[1];
h q[2];
cx q[1], q[2];
h q[1];
h q[2];