-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathALM.m
45 lines (38 loc) · 975 Bytes
/
ALM.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
function [L,S] = ALM(M)
%-------------------------------------------------------------------------------%
% l : low-rank matrix, principle component %
% S : spare matrix, noise or special feature %
% M : origin matrix, can decompose to L + S %
% Author : corehello %
% Email : [email protected] %
%-------------------------------------------------------------------------------%
% paer : Rubost principal component analysis? 2009 stanford tech
% report
[m,n] = size(M);
Y = zeros(m,n);
L = zeros(m,n);
S = zeros(m,n);
miu = m*n/(4*norm(M,1));
lamda = 1/sqrt(m*n);
k=0;
while norm(M-L-S,2)>10^-7*norm(M,2)
[U, sigma, V] = svd(M-S-(1/miu)*Y);
L = U*stao(sigma,miu)*V';
S = stao(M-L+(1/miu)*Y,lamda*miu);
Y = Y + miu * ( M - L - S );
k=k+1
end
function MA = stao(X,tao)
[m,n] = size(X);
MA = zeros(m,n);
for i=1:m
for j=1:n
MA(i,j)=sgn(X(i,j))*max(abs(X(i,j))-tao, 0);
end
end
function s = sgn(x)
if (x-0)>=0
s=1;
else
s=-1;
end