-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathmain.R
276 lines (218 loc) · 8.52 KB
/
main.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
# REQUIRED PACKAGES
library(stringr)
library(rvest)
library(tidyverse)
library(jsonlite)
library(tidytext)
library(lubridate)
library(wordcloud)
library(httr)
library(ggplot2)
library(wordcloud2)
library(RCurl)
library(curl)
library(pbapply)
library(ggthemes)
library(plotly)
library(kableExtra)
# READ SEARCH HISTORY
youtubeSearchHistory <- read_html("Takeout/YouTube and YouTube Music/history/search-history.html")
# SCRAPING SEARCH HISTORY
youtubeSearch <- youtubeSearchHistory %>%
html_nodes(".header-cell + .content-cell > a") %>%
html_text()
# SCRAPING TIMESTAMP
youtubeSearchContent <- youtubeSearchHistory %>%
html_nodes(".header-cell + .content-cell")
youtubeSearchTimeStr <- str_match(youtubeSearchContent, "<br>(.*?)</div>")[,2]
youtubeSearchTime <- mdy_hms(youtubeSearchTimeStr)
# CREATING DATA FRAME SEARCH + TIMESTAMP
youtubeSearchDataFrame <- data.frame(search = youtubeSearch,
time = youtubeSearchTime,
stringsAsFactors = FALSE)
head(youtubeSearchDataFrame)
# READ WATCH HISTORY
watchHistory <- read_html("Takeout/YouTube and YouTube Music/history/watch-history.html")
watchedVideoContent <- watchHistory %>%
html_nodes(".header-cell + .content-cell")
# POSSIBLE TIME CHARACTERS
watchVideoTimes <- str_match(watchedVideoContent,
"<br>([A-Z].*)</div>")[,2]
# POSSIBLE ID VALUES
watchedVideoIDs <- str_match(watchedVideoContent,
"watch\\?v=([a-zA-Z0-9-_]*)")[,2]
# VIDEO TITLE
watchedVideoTitles <- str_match(watchedVideoContent,
"watch\\?v=[a-zA-Z0-9-_]*\">(.*?)</a>")[,2]
# DATA FRAME WATCH HISTORY
watchedVideosDataFrame <- data.frame(id = watchedVideoIDs,
scrapedTitle = watchedVideoTitles,
scrapedTime = watchVideoTimes,
stringsAsFactors = FALSE)
watchedVideosDataFrame$time <- mdy_hms(watchedVideosDataFrame$scrapedTime)
head(watchedVideosDataFrame)
# ESTABLISH API KEY AND CONNECTION
youtubeAPIKey <- "HERE_YOUR_API_KEY"
connectionURL <- 'https://www.googleapis.com/youtube/v3/videos'
# TRYIING QUERY RESPONSE
videoID <- "SG2pDkdu5kE"
queryParams <- list()
queryResponse <- GET(connectionURL,
query = list(
key = youtubeAPIKey,
id = videoID,
fields = "items(id,snippet(channelId,title,categoryId))",
part = "snippet"
))
parsedData <- content(queryResponse, "parsed")
str(parsedData)
# REQUESTS OPTIONS
testConnection <- "https://www.google.com/"
testCount <- 100
# HTTR TEST
system.time(for(i in 1:testCount){
result <- GET(testConnection)
})
# RCURL Test
uris = rep(testConnection, testCount)
system.time(txt <- getURIAsynchronous(uris))
# CURL TEST
pool <- new_pool()
for(i in 1:testCount){curl_fetch_multi(testConnection)}
system.time(out <- multi_run(pool = pool))
# CREATE REQUEST AND REMOVE DUPLICATES
createRequest <- function(id){
paste0(connectionURL,
"?key=",youtubeAPIKey,
"&id=",id,
"&fields=","items(id,snippet(channelId,title,description,categoryId))",
"&part=","snippet")
}
uniqueWatchedVideoIDs <- unique(watchedVideosDataFrame$id)
requests <- pblapply(uniqueWatchedVideoIDs, createRequest )
# PARSE OUT RESPONSE
getMetadataDataFrame <- function(response){
rawchar <- rawToChar(response$content)
parsedData <- fromJSON(rawchar)
data.frame <- cbind(id = parsedData$items$id, parsedData$items$snippet)
return(data.frame)
}
videoMetadataDataFrame <- data.frame(id = c(),
channelId = c(),
title = c(),
description = c(),
categoryId = c()
)
# SUCCESS
addToMetadataDataFrame <- function(response){
.GlobalEnv$videoMetadataDataFrame <- rbind(.GlobalEnv$videoMetadataDataFrame,getMetadataDataFrame(response))
}
# FAIL
failFunction <- function(request){
print("fail")
}
# GRAB REQUEST RESPONSE FROM MEMORY
fetchMetadataFromMemory <- function(request){
return(getMetadataDataFrame(curl_fetch_memory(request)))
}
system.time(out <- multi_run(pool = pool))
saveRDS(videoMetadataDataFrame, file = "videoMetadataDataframeAsync1.rds")
length(requests)
nrow(videoMetadataDataFrame)
listMetadata <- pblapply(requests, fetchMetadataFromMemory)
# COMBINE LIST INTO A DATA FRAME
videoMetadataDataFrame <- bind_rows(listMetadata)
saveRDS(videoMetadataDataFrame, file = "videoMetadataDataFrame_memory.rds")
# CATEGORY ID REQUEST
categoryListURL <- "https://www.googleapis.com/youtube/v3/videoCategories"
categoryResponse <- GET(url = categoryListURL,
query = list(
key = youtubeAPIKey,
regionCode = "us",
part = "snippet"
))
parsedCategoryResponse <- content(categoryResponse, "parsed")
categoryDataFrame <- data.frame(categoryId=c(), category=c())
for(item in parsedCategoryResponse$items){
categoryDataFrame <<-rbind(categoryDataFrame,
data.frame(categoryId = item$id, category=item$snippet$title))
}
categoryDataFrame
videoMetadata <- merge(x = videoMetadataDataFrame, y = categoryDataFrame, by = "categoryId")
head(videoMetadata)
# COMBINE WITH WATCH HISTORY
watchedVideos <- merge(watchedVideosDataFrame , videoMetadata, by="id")
str(watchedVideos)
# VISUALIZE VIDEO CATEGORIES WATCHED
watchedVideos %>%
group_by(category) %>%
summarise(count = n()) %>%
arrange(desc(count))
watchedVideos %>%
ggplot(aes(x = time, fill = category)) +
labs(x= "Year", y= "Count") +
ggtitle("How much have your genre tastes changed over time?", "Most played categories")+
geom_area(stat = "bin") +
theme_economist_white()
ggplotly()
# VISUALIZE CLOCK WATCHES PER HOUR
clockPlot <- function (x, col = heat.colors(n), ...) {
if( min(x)<0 ) x <- x - min(x)
if( max(x)>1 ) x <- x/max(x)
n <- length(x)
if(is.null(names(x))) names(x) <- 0:(n-1)
m <- 1.05
plot(0, type = 'n', xlim = c(-m,m), ylim = c(-m,m),
axes = F, xlab = '', ylab = '', ...)
fig <- pi/2 - 2*pi/200*0:200
polygon( cos(fig), sin(fig) )
f2 <- .02
fig <- pi/2 - 2*pi/n*0:n
segments( (1+f2)*cos(fig), (1+f2)*sin(fig), (1-f2)*cos(fig), (1-f2)*sin(fig) )
segments( cos(fig), sin(fig),0, 0, col = 'light grey', lty = 3)
f1 <- -2*pi/n*(0:50)/50
for (i in 1:n) {
fig <- pi/2 - 2*pi/n*(i-1)
b <- pi/2 - 2*pi/n*i
polygon( c(0, x[i]*cos(fig+f1), 0), c(0, x[i]*sin(fig+f1), 0), col=col[i] )
f2 <- .1
text((1+f2)*cos(fig), (1+f2)*sin(fig), names(x)[i])
}
}
clockDataFrame <- watchedVideos %>%
mutate(hour = hour(time)) %>%
group_by(hour) %>%
summarise(count = n()) %>%
arrange(hour)
clockPlot(clockDataFrame$count, main = "What hours do you spend the most time watching YouTube?")
# TABLE MOST RE-WATCHED VIDEOS
w1 <- watchedVideos %>%
mutate(year = year(time)) %>%
group_by(year, title) %>%
summarise(count = n()) %>%
arrange(year, desc(count)) %>%
top_n(5)
mostReWatched <- knitr::kable(x = head(arrange(w1, desc(count)) %>%
select(year, title, ,count), 10),
col.names = c('Year', 'Video Title', 'Count'))
kable_styling(mostReWatched, "striped", position = "left", font_size = 12)
# WORDCLOUD MOST SEARCHED WORDS
myWords <- youtubeSearchDataFrame %>%
unnest_tokens(word, search) %>%
anti_join(stop_words) %>%
count(word, sort = TRUE)
myWordcloud <- myWords %>%
group_by(word) %>%
summarize(count = sum(n)) %>%
anti_join(stop_words)
wordcloud(words = myWordcloud$word, freq = myWordcloud$count, min.freq = 25,
max.words = 100, random.order =FALSE, rot.per =.35,
colors=brewer.pal(9, "Set1"))
# WORDCLOUD MOST FREQUENT WORDS IN VIDEO DESCRIPTIONS
descriptionsWordcloud <- watchedVideos %>%
unnest_tokens(word, description) %>%
anti_join(stop_words) %>%
count(word, sort = TRUE) %>%
filter(! word %in% c("www.instagram.com", "gmail.com", "www.twitter.com", "youtu.be", "como", "instagram", "instagram.com", "tú", "watch", "aquí", "pero", "su", "http", "al","se","si","goo.gl","smarturl.it","facebook","video","más", "twitter", "te","lo","este","tu", "para", "por", "con", "es", "del", "las", "una", "mi", "de", "en", "la", "el", "los", "https", "bit.ly" , "â", "www.youtube.com")) %>%
filter(n > 250)
wordcloud2(descriptionsWordcloud)