-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcnn_models.py
56 lines (43 loc) · 1.67 KB
/
cnn_models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
from keras.models import Sequential
from keras.layers import Conv2D, Dense, MaxPooling2D, Flatten, Dropout
def three_convolutions(inputShape):
"""
smaller CNN model for use w/o GPU
"""
model = Sequential()
# input 28x28
model.add(Conv2D(16, (5, 5), padding='same', activation='relu', input_shape=inputShape))
model.add(MaxPooling2D())
# input 14 x 14
model.add(Conv2D(16, (5, 5), padding='same', activation='relu'))
model.add(MaxPooling2D())
# input 7 x 7
model.add(Conv2D(32, (3, 3), activation='relu'))
model.add(MaxPooling2D())
# input 5 x 5
model.add(Flatten())
# input 800
model.add(Dense(64, activation='relu'))
model.add(Dense(10, activation='sigmoid'))
model.compile(optimizer='sgd', loss='categorical_crossentropy', metrics=['accuracy'])
return model
def five_convolutions(inputShape):
"""
five-layer CNN for use with a CPU
"""
model = Sequential()
model.add(Conv2D(32, (5, 5), padding='same', activation='relu', input_shape=inputShape))
model.add(Dropout(0.1))
model.add(Conv2D(64, (5, 5), padding='same', activation='relu'))
model.add(Dropout(0.1))
model.add(Conv2D(128, (3, 3), padding='same', activation='relu'))
model.add(MaxPooling2D())
model.add(Conv2D(256, (3, 3), padding='same', activation='relu'))
model.add(MaxPooling2D())
model.add(Conv2D(512, (3, 3), padding='same', activation='relu'))
model.add(MaxPooling2D())
model.add(Flatten())
model.add(Dense(256, activation='relu'))
model.add(Dense(10, activation='sigmoid'))
model.compile(optimizer='sgd', loss='categorical_crossentropy', metrics=['accuracy'])
return model