forked from m3h0w/visual-attention-cnn-and-eye-tracking
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
81 lines (66 loc) · 2.62 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
import pickle
import numpy as np
import tensorflow as tf
from matplotlib import pyplot as plt
from sklearn.metrics import confusion_matrix
import itertools
def save_object(obj, filename):
with open(filename, 'wb') as output: # Overwrites any existing file.
pickle.dump(obj, output, pickle.HIGHEST_PROTOCOL)
def load_object(filename):
with open(filename, 'rb') as fp:
return pickle.load(fp)
def unison_shuffled_copies(the_list):
assert len(the_list) > 1
for i in range(len(the_list) - 1):
assert len(the_list[i]) == len(the_list[i+1])
p = np.random.permutation(len(the_list[0]))
return [el[p] for el in the_list]
def normalize(a):
return (a - np.min(a))/np.ptp(a)
def _get_initial_lstm(features, H, D=2048):
with tf.variable_scope('initial_lstm'):
features_mean = tf.reduce_mean(features, 1)
w_h = tf.get_variable('w_h', [D, H])
b_h = tf.get_variable('b_h', [H])
h = tf.nn.tanh(tf.matmul(tf.ones_like(features_mean), w_h) + b_h)
w_c = tf.get_variable('w_c', [D, H])
b_c = tf.get_variable('b_c', [H])
c = tf.nn.tanh(tf.matmul(tf.ones_like(features_mean), w_c) + b_c)
return [c, h]
# filters out of a list all paths that are not in a list of filenames in ids_list
def filter_by_ids(files, ids_list):
return [file for file in files if filename_from_path(file) in ids_list]
def filename_from_path(path):
return path.split('/')[-1]
def plot_confusion_matrix(y_true, y_pred, classes,
normalize=False,
title='Confusion matrix',
cmap=plt.cm.Blues):
"""
This function prints and plots the confusion matrix.
Normalization can be applied by setting `normalize=True`.
"""
cm = confusion_matrix(y_true, y_pred)
if normalize:
cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
print("Normalized confusion matrix")
else:
print('Confusion matrix, without normalization')
# print(cm)
plt.imshow(cm, interpolation='nearest', cmap=cmap)
plt.title(title)
plt.colorbar()
tick_marks = np.arange(len(classes))
plt.xticks(tick_marks, classes, rotation=45)
plt.yticks(tick_marks, classes)
fmt = '.2f' if normalize else 'd'
thresh = cm.max() / 2.
for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
plt.text(j, i, format(cm[i, j], fmt),
horizontalalignment="center",
color="white" if cm[i, j] > thresh else "black")
plt.ylabel('True label')
plt.xlabel('Predicted label')
plt.tight_layout()
return plt.gcf()