-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathinference_atlanta_net.py
237 lines (162 loc) · 8.16 KB
/
inference_atlanta_net.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
import os
import glob
##import json
import argparse
import numpy as np
from PIL import Image
from tqdm import tqdm
import math
import torch
from atlanta_model import AtlantaNet
from misc import tools, atlanta_transform, A2P, layout_viewer
###only for debug
import matplotlib.pyplot as plt
import cv2
#####dafault values
def_camera_h = 1.7 ####as a metric scale factor - camera height in meters
def_pth ='ckpt/resnet101_atlantalayout.pth' ##
def_output_dir = 'results/'
def_img = 'data/atlantalayout/test/img/2t7WUuJeko7_c2e11b94c07a4d6c85cc60286f586a02_equi.png' #
def cuda_to_cpu_tensor(x_tensors):
x_tensors = x_tensors.cpu().numpy()
sz = x_tensors.shape[0]
x_imgs = []
x_img = x_tensors[0 : sz]
x_imgs.append(x_img)
return np.array(x_imgs)
def inference(net, x, device):
cont = net(x.to(device)) ###
cont = cuda_to_cpu_tensor(cont.cpu()).mean(0)
return cont
def h_from_contours(cp_prob, fp_prob):
fp_prob_cont = tools.approx_shape(fp_prob)
cp_prob_cont = tools.approx_shape(cp_prob)
i_fp_prob = np.zeros(fp_prob.shape)
i_cp_prob = np.zeros(cp_prob.shape)
f_count = fp_prob_cont.shape[0]
if(f_count>3):
cv2.polylines(i_fp_prob, [fp_prob_cont], True, 255, 1)
i_fp_prob = np.uint8(i_fp_prob)
h_opt = 0.0
h_max = 5.0
max_i = 0
for h in np.arange((def_camera_h+0.1), h_max, 0.05):
h_ratio = (h - def_camera_h) / def_camera_h
cp_prob_scaled = cp_prob
if(h_ratio>0 and fp_prob.shape[0]>0):
cp_prob_scaled = tools.resize_crop(cp_prob, h_ratio, fp_prob.shape[0])
cp_prob_cont = tools.approx_shape(cp_prob_scaled)
i_cp_prob = np.zeros(cp_prob_scaled.shape)
c_count = cp_prob_cont.shape[0]
if(c_count>3):
cv2.polylines(i_cp_prob, [cp_prob_cont], True, 255, 1)
i_cp_prob = np.uint8(i_cp_prob)
prob_i = cv2.bitwise_and(i_cp_prob,i_fp_prob)
i_count = cv2.countNonZero(prob_i)
if(i_count>max_i):
max_i = i_count
h_opt = h - def_camera_h
if(h_opt>0):
ceiling_height = h_opt
else:
ceiling_height = 1.3 ###default value is case of failure
return ceiling_height
if __name__ == '__main__':
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--pth', required=False, default = def_pth,
help='path to load saved checkpoint.')
parser.add_argument('--img', required=False, default = def_img)
parser.add_argument('--output_dir', required=False, default = def_output_dir)
parser.add_argument('--visualize', action='store_true', default = True)
parser.add_argument('--no_cuda', action='store_true',
help='disable cuda')
args = parser.parse_args()
# Prepare image to processed
paths = sorted(glob.glob(args.img))
if len(paths) == 0:
print('no images found')
for path in paths:
assert os.path.isfile(path), '%s not found' % path
# Check target directory
if not os.path.isdir(args.output_dir):
print('Output directory %s not existed. Create one.' % args.output_dir)
os.makedirs(args.output_dir)
device = torch.device('cpu' if args.no_cuda else 'cuda')
# Loaded trained model
net = tools.load_trained_model(AtlantaNet, args.pth).to(device)
net.eval()
# Inferencing
with torch.no_grad():
for i_path in tqdm(paths, desc='Inferencing'):
k = os.path.split(i_path)[-1][:-4]
W = 1024
H = 512
# Load image
img_pil = Image.open(i_path)
if(len(img_pil.getbands())<3):
img_pil = img_pil.convert("RGB")
if img_pil.size != (W, H):
img_pil = img_pil.resize((W, H), Image.BICUBIC)
img_ori = np.array(img_pil)[..., :3].transpose([2, 0, 1]).copy()
e_x = torch.FloatTensor([img_ori / 255])
print('e_x shape',e_x.shape,'for image',i_path)
e2p = A2P(out_dim=net.fp_size, gpu=False)
[up_view, down_view] = e2p(e_x)
x_up = torch.FloatTensor(up_view)
x_down = torch.FloatTensor(down_view)
# Inferecing shapes
up_mask = inference(net, x_up, device)
down_mask = inference(net, x_down, device)
up_mask = up_mask.squeeze(0)
down_mask = down_mask.squeeze(0)
h_c_max = np.amax(up_mask)
h_f_max = np.amax(down_mask)
up_mask_img = ( up_mask * 255/h_c_max ).astype(np.uint8)
down_mask_img = ( down_mask * 255/h_f_max).astype(np.uint8)
cp_ret, cp_prob = cv2.threshold(up_mask_img, 10, 255, cv2.THRESH_BINARY+cv2.THRESH_OTSU)
fp_ret, fp_prob = cv2.threshold(down_mask_img, 10, 255, cv2.THRESH_BINARY+cv2.THRESH_OTSU)
##using cm to export
h_f_mean = 100.0 * def_camera_h
h_c_mean = 100.0 * h_from_contours(cp_prob,fp_prob)
print('Estimated heights:',h_c_mean,-h_f_mean)
scale_f = h_f_mean/atlanta_transform.fl
scale_c = h_c_mean/atlanta_transform.fl
cp_prob_metric = tools.resize(cp_prob, scale_c)
fp_prob_metric = tools.resize(fp_prob, scale_f)
c_pts, r_c, c_area = tools.approx_shape(cp_prob_metric, return_reliability=True)
f_pts, r_f, f_area = tools.approx_shape(fp_prob_metric, return_reliability=True)
if( (r_c<0.7 and r_f>r_c) or len(c_pts)<3):
###ceiling dims unreliable using floor shape
room_pts = f_pts
scale = scale_f
else:
room_pts = c_pts
scale = scale_c
####recovering metric scale to save the model
fp_size = net.fp_size*scale
if(len(room_pts)>3):
json_name = tools.export2json(room_pts, W, H, fp_size, args.output_dir, args.img, k, h_c_mean, -h_f_mean)
else:
print('Failing to save model ',i_path)
#visualize output#####################
if(args.visualize):
### draw functions
x_up_img = tools.x2image(x_up.squeeze(0))
x_down_img = tools.x2image(x_down.squeeze(0))
footprint_up = x_up_img.copy()
footprint_down = x_down_img.copy()
footprint_up_metric = tools.resize(footprint_up, scale_c)
footprint_down_metric = tools.resize(footprint_down, scale_f)
if(len(c_pts)>0):
cv2.polylines(footprint_up_metric, [c_pts], True, (0,0,255),2,cv2.LINE_AA)
if(len(f_pts)>3):
cv2.polylines(footprint_down_metric, [f_pts], True, (255,0,0),2,cv2.LINE_AA)
if (json_name is not None):
layout_viewer.show_3D_layout(args.img, json_name, def_camera_h)
plt.figure(0)
plt.title('Ceiling tensor with result')
plt.imshow(footprint_up_metric)
plt.figure(1)
plt.title('Floor tensor with result')
plt.imshow(footprint_down_metric)
plt.show()