forked from JDACS4C-IMPROVE/GraphDRP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgraphdrp_baseline_pytorch.py
306 lines (255 loc) · 10.2 KB
/
graphdrp_baseline_pytorch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
import argparse
import datetime
import json
import os
from pathlib import Path
import sys
from random import shuffle
from time import time
import json
from sklearn import metrics
import candle
import numpy as np
import pandas as pd
import torch
import torch.nn as nn
import graphdrp as bmk
from models.gat import GATNet
from models.gat_gcn import GAT_GCN
from models.gcn import GCNNet
from models.ginconv import GINConvNet
from utils import *
class Timer:
"""
Measure runtime.
"""
def __init__(self):
self.start = time()
def timer_end(self):
self.end = time()
time_diff = self.end - self.start
return time_diff
def display_timer(self, print_fn=print):
time_diff = self.timer_end()
if (time_diff) // 3600 > 0:
print_fn("Runtime: {:.1f} hrs".format((time_diff) / 3600))
else:
print_fn("Runtime: {:.1f} mins".format((time_diff) / 60))
def train(model, device, train_loader, optimizer, epoch, log_interval):
""" Training function at each epoch. """
print("Epoch {}. Training on {} samples...".format(epoch, len(train_loader.dataset)))
model.train()
loss_fn = nn.MSELoss()
avg_loss = []
for batch_idx, data in enumerate(train_loader):
data = data.to(device)
optimizer.zero_grad()
output, _ = model(data)
loss = loss_fn(output, data.y.view(-1, 1).float().to(device))
loss.backward()
optimizer.step()
avg_loss.append(loss.item())
if batch_idx % log_interval == 0:
print(
"Train epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}".format(
epoch,
batch_idx * len(data.x),
len(train_loader.dataset),
100.0 * batch_idx / len(train_loader),
loss.item(),
)
)
return sum(avg_loss) / len(avg_loss)
def predicting(model, device, loader):
model.eval()
total_preds = torch.Tensor()
total_labels = torch.Tensor()
print("Make prediction for {} samples...".format(len(loader.dataset)))
with torch.no_grad():
for data in loader:
data = data.to(device)
output, _ = model(data)
total_preds = torch.cat((total_preds, output.cpu()), 0)
total_labels = torch.cat((total_labels, data.y.view(-1, 1).cpu()), 0)
return total_labels.numpy().flatten(), total_preds.numpy().flatten()
def launch(modeling, args):
timer = Timer()
if args.set == "mixed":
set_str = "_mixed"
val_scheme = "mixed_set"
elif args.set == "cell":
set_str = "_cell_blind"
val_scheme = "cell_blind"
elif args.set == "drug":
set_str = "_blind"
val_scheme = "drug_blind"
# Create output dir
if args.output_dir is not None:
outdir = Path(args.output_dir)
else:
outdir = fdir / "results"
os.makedirs(outdir, exist_ok=True)
# Fetch data (if needed)
ftp_origin = f"https://ftp.mcs.anl.gov/pub/candle/public/improve/model_curation_data/GraphDRP/data_processed/{val_scheme}/processed"
data_file_list = ["train_data.pt", "val_data.pt", "test_data.pt"]
# CANDLE_DATA_DIR = ./data_processed/mixed_set/processed
candle_data_dir_env_var = os.getenv('CANDLE_DATA_DIR')
print(f'CANDLE_DATA_DIR: {candle_data_dir_env_var}')
for f in data_file_list:
candle.get_file(fname=f,
origin=os.path.join(ftp_origin, f.strip()),
unpack=False, md5_hash=None,
cache_subdir=args.cache_subdir)
_data_dir = os.path.split(args.cache_subdir)[0]
root = os.getenv('CANDLE_DATA_DIR') + '/' + _data_dir
# CANDLE known params
lr = args.learning_rate
num_epoch = args.epochs
train_batch = args.batch_size
# Model specific params
log_interval = args.log_interval
val_batch = args.val_batch
test_batch = args.test_batch
print("Learning rate: ", lr)
print("Epochs: ", num_epoch)
model_st = modeling.__name__
dataset = "GDSC"
train_losses = []
val_losses = []
val_pearsons = []
# print("\nrunning on ", model_st + "_" + dataset)
# Prepare data loaders
print("root: {}".format(root))
file_train = args.train_data
file_val = args.val_data
file_test = args.test_data
train_data = TestbedDataset(root=root, dataset=file_train)
val_data = TestbedDataset(root=root, dataset=file_val)
test_data = TestbedDataset(root=root, dataset=file_test)
# make data PyTorch mini-batch processing ready
train_loader = DataLoader(train_data, batch_size=train_batch, shuffle=True)
val_loader = DataLoader(val_data, batch_size=val_batch, shuffle=False)
test_loader = DataLoader(test_data, batch_size=test_batch, shuffle=False)
print("CPU/GPU: ", torch.cuda.is_available())
# CUDA device from env var
# assert os.getenv("CUDA_VISIBLE_DEVICES").isnumeric(), print("CUDA_VISIBLE_DEVICES must be numeric.")
# cuda_name = f"cuda:{int(os.getenv('CUDA_VISIBLE_DEVICES'))}"
# if os.getenv("CUDA_VISIBLE_DEVICES").isnumeric():
if os.getenv("CUDA_VISIBLE_DEVICES") is not None:
print("CUDA_VISIBLE_DEVICES:", os.getenv("CUDA_VISIBLE_DEVICES"))
cuda_name = "cuda:0"
else:
cuda_name = args.cuda_name
# Training the model
device = torch.device(cuda_name if torch.cuda.is_available() else "cpu")
print("Device: ", device)
model = modeling().to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=lr)
best_mse = 1000
best_pearson = 1
best_epoch = -1
model_file_name = outdir / ("model_" + model_st + "_" + dataset + "_" + val_scheme + ".model")
result_file_name = outdir / ("result_" + model_st + "_" + dataset + "_" + val_scheme + ".csv")
loss_fig_name = str(outdir / ("model_" + model_st + "_" + dataset + "_" + val_scheme + "_loss"))
pearson_fig_name = str(outdir / ("model_" + model_st + "_" + dataset + "_" + val_scheme + "_pearson"))
for epoch in range(num_epoch):
train_loss = train(model, device, train_loader, optimizer, epoch + 1, log_interval)
# Val set scores
G, P = predicting(model, device, val_loader)
ret = [rmse(G, P),
mse(G, P),
pearson(G, P),
spearman(G, P),
metrics.r2_score(G, P)
]
# # Test set scores
# G_test, P_test = predicting(model, device, test_loader)
# ret_test = [
# rmse(G_test, P_test),
# mse(G_test, P_test),
# pearson(G_test, P_test),
# spearman(G_test, P_test),
# metrics.r2_score(G_test, P_test)
# ]
train_losses.append(train_loss)
val_losses.append(ret[1])
val_pearsons.append(ret[2])
if ret[1] < best_mse:
torch.save(model.state_dict(), model_file_name)
with open(result_file_name, "w") as f:
f.write(",".join(map(str, ret)))
# f.write(",".join(map(str, ret_test)))
best_epoch = epoch + 1
best_rmse = ret[0]
best_mse = ret[1]
best_pearson = ret[2]
best_spearman = ret[3]
best_r2 = ret[4]
print(f"MSE improved at epoch {best_epoch}; Best MSE: {best_mse:.8f}; Model: {model_st}; Dataset: {dataset}")
else:
print(f"No improvement since epoch {best_epoch}; Best MSE: {best_mse:.8f}; Model: {model_st}; Dataset: {dataset}")
draw_loss(train_losses, val_losses, loss_fig_name)
draw_pearson(val_pearsons, pearson_fig_name)
# # Supervisor HPO
# print("\nIMPROVE_RESULT val_loss:\t{}\n".format(best_mse))
val_scores = {"total_epochs": int(num_epoch),
"best_epoch": int(best_epoch),
"val_loss": float(best_mse),
"pcc": float(best_pearson),
"scc": float(best_spearman),
"rmse": float(best_rmse),
"r2": float(best_r2)}
# with open(outdir / "scores.json", "w", encoding="utf-8") as f:
# json.dump(val_scores, f, ensure_ascii=False, indent=4)
# ----------------------------
# Test predictions and scores (this is not required)
# ----------------------------
# Test set raw predictions
G_test, P_test = predicting(model, device, test_loader)
preds = pd.DataFrame({"True": G_test, "Pred": P_test})
preds_file_name = f"test_preds_{val_scheme}_{model_st}_{dataset}.csv"
preds.to_csv(outdir / preds_file_name, index=False)
# Test set scores
pcc_test = pearson(G_test, P_test)
scc_test = spearman(G_test, P_test)
rmse_test = rmse(G_test, P_test)
r2_test = metrics.r2_score(G_test, P_test)
test_scores = {"pcc": pcc_test, "scc": scc_test, "rmse": rmse_test, "r2": r2_test}
# Save test scores
with open(outdir / f"test_scores_{val_scheme}_{model_st}_{dataset}.json", "w", encoding="utf-8") as f:
json.dump(test_scores, f, ensure_ascii=False, indent=4)
# ----------------------------
timer.display_timer()
print("Scores:\n\t{}".format(val_scores))
return val_scores
def run(gParameters):
print("In Run Function:\n")
args = candle.ArgumentStruct(**gParameters)
modeling = [GINConvNet, GATNet, GAT_GCN, GCNNet][args.modeling]
# Call launch() with specific model arch and args with all HPs
scores = launch(modeling, args)
# Supervisor HPO
print("\nIMPROVE_RESULT val_loss:\t{}\n".format(scores["val_loss"]))
with open(Path(args.output_dir) / "scores.json", "w", encoding="utf-8") as f:
json.dump(scores, f, ensure_ascii=False, indent=4)
return scores
def initialize_parameters():
""" Initialize the parameters for the GraphDRP benchmark. """
print("Initializing parameters\n")
graphdrp_bmk = bmk.BenchmarkGraphDRP(
filepath=bmk.file_path,
defmodel="graphdrp_default_model.txt",
# defmodel="graphdrp_model_candle.txt",
framework="pytorch",
prog="GraphDRP",
desc="CANDLE compliant GraphDRP",
)
gParameters = candle.finalize_parameters(graphdrp_bmk)
return gParameters
def main():
gParameters = initialize_parameters()
print(gParameters)
scores = run(gParameters)
print("Finished.")
if __name__ == "__main__":
main()