-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfedavg_api.py
552 lines (514 loc) · 21.5 KB
/
fedavg_api.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
import copy
import logging
import random
from tqdm import tqdm
import numpy as np
import torch
import wandb
from datetime import datetime
from client import Client
from sklearn.metrics import roc_auc_score
import matplotlib.pyplot as plt
class FedAvgAPI(object):
def __init__(self, dataset, device, args, model_trainer, wandbConfig):
self.device = device
self.args = args
self.wandbConfig = wandbConfig
self.fedmid = self.wandbConfig.fedmid
[
train_data_num,
test_data_num,
train_data_global,
test_data_global,
train_data_local_num_dict,
train_data_local_dict,
test_data_local_dict,
class_num,
_dataset,
] = dataset
self.train_global = train_data_global
self.test_global = test_data_global
self.val_global = None
self.errors = []
self.communication_rounds = []
self.final_predTest = None
self.final_labelTest = None
self.train_data_num_in_total = train_data_num
self.test_data_num_in_total = test_data_num
self.client_list = []
self.train_data_local_num_dict = train_data_local_num_dict
self.train_data_local_dict = train_data_local_dict
self.test_data_local_dict = test_data_local_dict
self.model_trainer = model_trainer
# self._instanciate_opt()
self._setup_clients(
train_data_local_num_dict,
train_data_local_dict,
test_data_local_dict,
model_trainer,
)
if self.args.dataset in [
"MUV",
"BACE",
"BBBP",
"ClinTox",
"SIDER",
"ToxCast",
"HIV",
"PCBA",
"Tox21",
]:
self.bestTest = -1e7
self.bestVal = -1e7
self.bestQm9EveryTask = []
else:
self.bestTest = 1e7
self.bestVal = 1e7
self.bestQm9EveryTask = []
def error_plot(self):
plt.figure(figsize=(10, 6))
plt.plot(
self.communication_rounds,
self.errors,
label="MAE (Band-gap dataset)",
marker="o",
)
plt.xlabel("Communication Rounds")
plt.ylabel("MAE (eV)")
plt.title("Error Plot: Band-gap Dataset Across Communication Rounds")
plt.legend()
plt.grid()
plt.savefig("error_plot_global_model.png")
# plt.show()
def scatter_plot(self, predictions, ground_truth):
plt.figure(figsize=(8, 8))
plt.scatter(ground_truth, predictions, alpha=0.6, edgecolor="k")
plt.plot(
[min(ground_truth), max(ground_truth)],
[min(ground_truth), max(ground_truth)],
"r--",
label="Ideal Fit",
)
plt.xlabel("Ground Truth")
plt.ylabel("Predictions")
plt.title("Scatter Plot of Global Model Predictions vs Ground Truth")
plt.legend()
plt.grid()
plt.savefig("scatter_plot_global_model.png")
# plt.show()
def _setup_clients(
self,
train_data_local_num_dict,
train_data_local_dict,
test_data_local_dict,
model_trainer,
):
logging.info("############setup_clients (START)#############")
for client_idx in range(self.args.client_num_per_round):
c = Client(
client_idx,
train_data_local_dict[client_idx],
test_data_local_dict[client_idx],
train_data_local_num_dict[client_idx],
self.args,
self.device,
model_trainer,
)
self.client_list.append(c)
logging.info("############setup_clients (END)#############")
def _instanciate_opt(self):
self.opt = torch.optim.Adam(
# self.model_global.parameters(), lr=self.args.server_lr
self.model_trainer.model.parameters(),
lr=self.wandbConfig.weightFed,
# momentum=0.9 # for fedavgm
# eps = 1e-3 for adaptive optimizer
)
def train(self):
if self.fedmid == "opt":
for round_idx in range(self.args.comm_round):
w_global = self.model_trainer.get_model_params()
logging.info(
"################ Communication round : {}".format(round_idx)
)
w_locals = []
"""
for scalability: following the original FedAvg algorithm, we uniformly sample a fraction of clients in each round.
Instead of changing the 'Client' instances, our implementation keeps the 'Client' instances and then updates their local dataset
"""
client_indexes = self._client_sampling(
round_idx,
self.args.client_num_in_total,
self.args.client_num_per_round,
)
logging.info("client_indexes = " + str(client_indexes))
for idx, client in enumerate(self.client_list):
# update dataset
client_idx = client_indexes[idx]
client.update_local_dataset(
client_idx,
self.train_data_local_dict[client_idx],
self.test_data_local_dict[client_idx],
self.train_data_local_num_dict[client_idx],
)
# train on new dataset
w = client.train(w_global, round_idx, client_idx)
w_locals.append((client.get_sample_number(), copy.deepcopy(w)))
# loss_locals.append(copy.deepcopy(loss))
# logging.info('Client {:3d}, loss {:.3f}'.format(client_idx, loss))
# reset weight after standalone simulation
self.model_trainer.set_model_params(w_global)
# update global weights
w_avg = self._aggregate(w_locals)
# server optimizer
self.opt.zero_grad()
opt_state = self.opt.state_dict()
self._set_model_global_grads(w_avg)
self._instanciate_opt()
self.opt.load_state_dict(opt_state)
self.opt.step()
if round_idx % self.args.frequency_of_the_test == 0:
self.validateGlobal(round_idx)
else:
w_global = self.model_trainer.get_model_params()
for round_idx in range(self.args.comm_round):
logging.info(
"################Communication round : {}".format(round_idx)
)
w_locals = []
"""
for scalability: following the original FedAvg algorithm, we uniformly sample a fraction of clients in each round.
Instead of changing the 'Client' instances, our implementation keeps the 'Client' instances and then updates their local dataset
"""
client_indexes = self._client_sampling(
round_idx,
self.args.client_num_in_total,
self.args.client_num_per_round,
)
logging.info("client_indexes = " + str(client_indexes))
for idx, client in enumerate(self.client_list):
# update dataset
client_idx = client_indexes[idx]
print(
"Start Training: round_"
+ str(round_idx)
+ "_client_"
+ str(client_idx)
)
client.update_local_dataset(
client_idx,
self.train_data_local_dict[client_idx],
self.test_data_local_dict[client_idx],
self.train_data_local_num_dict[client_idx],
)
# train on new dataset
w = client.train(w_global, round_idx, client_idx)
# self.logger.info("local weights = " + str(w))
w_locals.append((client.get_sample_number(), copy.deepcopy(w)))
# update global weights
w_global = self._aggregate(w_locals)
self.model_trainer.set_model_params(w_global)
# test results
# at last round
if round_idx % self.args.frequency_of_the_test == 0:
self.validateGlobal(round_idx)
def _set_model_global_grads(self, new_state):
new_model = copy.deepcopy(self.model_trainer.model)
new_model.load_state_dict(new_state)
with torch.no_grad():
for parameter, new_parameter in zip(
self.model_trainer.model.parameters(), new_model.parameters()
):
parameter.grad = parameter.data - new_parameter.data
# because we go to the opposite direction of the gradient
model_state_dict = self.model_trainer.model.state_dict()
new_model_state_dict = new_model.state_dict()
for k in dict(self.model_trainer.model.named_parameters()).keys():
new_model_state_dict[k] = model_state_dict[k]
self.model_trainer.set_model_params(new_model_state_dict)
def _client_sampling(self, round_idx, client_num_in_total, client_num_per_round):
if client_num_in_total == client_num_per_round:
client_indexes = [
client_index for client_index in range(client_num_in_total)
]
else:
num_clients = min(client_num_per_round, client_num_in_total)
np.random.seed(
round_idx
) # make sure for each comparison, we are selecting the same clients each round
client_indexes = np.random.choice(
range(client_num_in_total), num_clients, replace=False
)
logging.info("client_indexes = %s" % str(client_indexes))
return client_indexes
def _aggregate(self, w_locals):
training_num = 0
for idx in range(len(w_locals)):
(sample_num, averaged_params) = w_locals[idx]
training_num += sample_num
(sample_num, averaged_params) = w_locals[0]
for k in averaged_params.keys():
for i in range(0, len(w_locals)):
local_sample_number, local_model_params = w_locals[i]
w = local_sample_number / training_num
if i == 0:
averaged_params[k] = local_model_params[k] * w
else:
averaged_params[k] += local_model_params[k] * w
return averaged_params
def validateGlobal(self, epoch):
# print(epoch, "xxxxxxxxxxxxxxxxxxxxxxxxx")
comm_round_idx = epoch
epoch = int(epoch * self.args.localStepsPerRound)
model = self.model_trainer.model
tbar = tqdm(self.test_global)
device = self.device
model.to(device)
model.eval()
predList = []
labelList = []
with torch.no_grad():
for batch_idx, data in enumerate(tbar):
if self.args.dataset == "qm9":
z, pos, batch, y = (
data.z.to(device),
data.pos.to(device),
data.batch.to(device),
data.y.to(device),
)
pred, latentEmb = model(z, pos, batch)
# mae = (pred.view(-1) - y[:, self.args.target]).abs()
predList.append(pred.squeeze())
labelList.append(y.squeeze())
elif self.args.dataset in [
"mat",
"band",
"formation",
"2d",
"alloy",
"pt",
"dielecric",
"elasticity",
"perovskites",
]:
data = data.to(device)
pred, latentEmb = model(data)
predList.append(pred.squeeze())
labelList.append(data.y.squeeze())
elif self.args.dataset in ["esol", "lipo", "freesolv"]:
smiles, bg, labels, masks = data
labels, masks = labels.to(device), masks.to(device)
# prediction = predict(args, model, bg)
bg = bg.to(device)
node_feats = bg.ndata.pop("h").to(device)
edge_feats = bg.edata.pop("e").to(device)
pred, latentEmb = model(bg, node_feats, edge_feats)
predList.append(pred.squeeze())
labelList.append(labels.squeeze())
elif self.args.dataset in [
"MUV",
"BACE",
"BBBP",
"ClinTox",
"SIDER",
"ToxCast",
"HIV",
"PCBA",
"Tox21",
]:
smiles, bg, labels, masks = data
labels, masks = labels.to(device), masks.to(device)
# prediction = predict(args, model, bg)
bg = bg.to(device)
node_feats = bg.ndata.pop("h").to(device)
edge_feats = bg.edata.pop("e").to(device)
pred, latentEmb = model(bg, node_feats, edge_feats)
predList.append(torch.sigmoid(pred).squeeze())
labelList.append(labels.squeeze())
# z, pos, batch, y = data.z.to(device), data.pos.to(device), data.batch.to(device), data.y.to(device)
# pred, _ = model(z, pos, batch)
# loss = 1 * (mae.mean())
tbar.set_description(
"Round: {:d} Iter: {:d} / {:d}".format(
epoch, batch_idx, len(self.test_global)
)
)
# predAll = torch.cat(predList).flatten()
# labelAll = torch.cat(labelList).flatten()
if self.args.dataset in ["qm9"]:
valSize = 10000
elif self.args.dataset in [
"mat",
"band",
"formation",
"2d",
"alloy",
"pt",
"dielecric",
"elasticity",
"perovskites",
]:
valSize = int(0.5 * len(self.test_global.dataset))
else:
valSize = int(0.5 * len(self.test_global.dataset))
# torch.random.manual_seed(123)
torch.random.manual_seed(random.randint(0, 100))
indexShuffle = torch.randperm(len(self.test_global.dataset))
if predList[-1].size() == torch.Size([]):
predList[-1] = predList[-1].unsqueeze(0)
labelList[-1] = labelList[-1].unsqueeze(0)
predAll = torch.cat(predList, dim=0)[indexShuffle]
labelAll = torch.cat(labelList, dim=0)[indexShuffle]
if self.args.dataset in [
"qm9",
"mat",
"band",
"formation",
"2d",
"alloy",
"pt",
"dielecric",
"elasticity",
"perovskites",
]:
# predAll=predAll.flatten()
# labelAll=labelAll.flatten()
# resultsNoMean = (predAll - labelAll).abs().mean(dim=0)
maeAll = (predAll - labelAll).abs()
valResult = maeAll[:valSize].mean().item()
valResultStd = maeAll[:valSize].std().item()
testResult = maeAll[valSize:].mean().item()
testResultStd = maeAll[valSize:].std().item()
resultsNoMean = (predAll - labelAll).abs().mean(dim=0)
metricName = " mae "
self.errors.append(testResult)
self.communication_rounds.append(comm_round_idx)
if comm_round_idx == self.args.comm_round - 1:
self.final_predTest = predAll[valSize:].cpu()
self.final_labelTest = labelAll[valSize:].cpu()
self.error_plot()
self.scatter_plot(self.final_predTest, self.final_labelTest)
elif self.args.dataset in ["esol", "lipo", "freesolv"]:
predAll = predAll.flatten()
labelAll = labelAll.flatten()
mseAll = (predAll - labelAll) ** 2
valResult = torch.sqrt(mseAll[:valSize].mean()).item()
valResultStd = mseAll[:valSize].std().item()
testResult = torch.sqrt(mseAll[valSize:].mean()).item()
testResultStd = mseAll[valSize:].std().item()
metricName = " rmse "
elif self.args.dataset in [
"MUV",
"BACE",
"BBBP",
"ClinTox",
"SIDER",
"ToxCast",
"HIV",
"PCBA",
"Tox21",
]:
predVal = predAll[:valSize]
labelVal = labelAll[:valSize]
predTest = predAll[valSize:]
labelTest = labelAll[valSize:]
valResultsList = []
testResultsList = []
if predAll.size().__len__() == 1:
valResultsList.append(roc_auc_score(labelVal.cpu(), predVal.cpu()))
testResultsList.append(
roc_auc_score(labelTest.cpu(), predTest.cpu())
)
else:
for itask in range(predAll.shape[1]):
valResultsList.append(
roc_auc_score(
labelVal.cpu()[:, itask], predVal.cpu()[:, itask]
)
)
testResultsList.append(
roc_auc_score(
labelTest.cpu()[:, itask], predTest.cpu()[:, itask]
)
)
valResult = torch.Tensor(valResultsList).mean().item()
valResultStd = 0
testResult = torch.Tensor(testResultsList).mean().item()
testResultStd = 0
metricName = " auc "
if metricName == " auc ":
if valResult > self.bestVal:
self.bestVal = valResult
self.bestTest = testResult
else:
if valResult < self.bestVal:
self.bestVal = valResult
self.bestTest = testResult
if self.args.dataset in [
"qm9",
"mat",
"band",
"formation",
"2d",
"alloy",
"pt",
"dielecric",
"elasticity",
"perovskites",
]:
self.bestQm9EveryTask = resultsNoMean.tolist()
now = datetime.now()
# dd/mm/YY H:M:S
dt_string = now.strftime("%d/%m/%Y %H:%M:%S")
curValResult = (
"cur Val Steps: "
+ str(epoch)
+ metricName
+ str(valResult)
+ " std "
+ str(valResultStd)
+ "\n"
)
curTestResult = (
"cur Test Steps: "
+ str(epoch)
+ metricName
+ str(testResult)
+ " std "
+ str(testResultStd)
+ "\n"
)
bestValResult = (
"best Val Steps: " + str(epoch) + metricName + str(self.bestVal) + "\n"
)
bestTestResult = (
"best Test Steps: "
+ str(epoch)
+ metricName
+ str(self.bestTest)
+ "\n"
)
# stats = {'val_mae': valResult, 'test_mae': testResult}
stats = {
"Val": valResult,
"Test": testResult,
"bestVal": self.bestVal,
"bestTest": self.bestTest,
"round": epoch,
"results": self.bestQm9EveryTask,
}
wandb.log(stats)
# wandb.log({"TestMae": testResult, "steps": epoch})
# wandb.log({"Valmae": valResult, "steps": epoch})
res = (
dt_string
+ "\n"
+ curValResult
+ curTestResult
+ bestValResult
+ bestTestResult
+ "detail results"
+ str(self.bestQm9EveryTask)
+ "\n"
)
logging.info(res)