-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprocess_speech.py
263 lines (233 loc) · 11.1 KB
/
process_speech.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
from transformers import MarianMTModel, MarianTokenizer, pipeline
from vosk import Model, KaldiRecognizer, SetLogLevel
import os
import sys
import json
import subprocess
from subprocess import CalledProcessError
import argparse
import time
import multiprocessing as mp
import logging
import cTTS # my own edited and not from package
def print_green(str_to_color, str=""):
ansi_green = "\u001b[32m"
ansi_reset = "\u001b[0m"
print(ansi_green + str_to_color + ansi_reset + str)
def get_argparser():
parser = argparse.ArgumentParser()
parser.add_argument(
'-i', '--in-language', default="en", choices=("en", "de"),
help='set input language')
parser.add_argument(
'-f', '--filter', action='store_true',
help='use noise filter')
subparsers = parser.add_subparsers(required=True, dest='subcommand')
parser_mic = subparsers.add_parser('mic')
parser_mic.add_argument(
'-l', '--list-devices', action='store_true',
help='show list of ALSA sources and exit (\'pactl list short sources\')')
parser_mic.add_argument(
'-d', '--device', default='default',
help='set ALSA source (name (recommended) or index)')
parser_video = subparsers.add_parser('video')
parser_video.add_argument(
'in_video',
help='video file for input')
return parser
def get_marian_names(lang) -> (str, str):
#https://huggingface.co/Helsinki-NLP/opus-mt-en-de
#https://huggingface.co/Helsinki-NLP/opus-mt-de-e
marian_model_name_en = "Helsinki-NLP/opus-mt-en-de"
marian_directory_en = 'marian-translate-en-de'
marian_model_name_de = "Helsinki-NLP/opus-mt-de-en"
marian_directory_de = 'marian-translate-de-en'
if lang == "en":
task = "translation_en_to_de"
return (marian_model_name_en, marian_directory_en, task)
else:
task = "translation_de_to_en"
return (marian_model_name_de, marian_directory_de, task)
def get_tts_name(in_lang) -> str:
if in_lang == "en":
# german speech output
return "tts_models/de/thorsten/vits"
else:
# english speech output
return "tts_models/en/vctk/vits"
def load_vosk_model(in_lang):
"""downloads model automatically"""
vosk_model_name_en = "vosk-model-en-us-0.22"
vosk_model_name_de = "vosk-model-de-0.21"
try:
if in_lang == "en":
return Model(model_name=vosk_model_name_en)
return Model(model_name=vosk_model_name_de)
except Exception as e:
sys.exit("Exception: " + str(e))
def load_trans_models(marian_directory, marian_model_name):
if not os.path.exists(marian_directory):
# download models and then load local model files
trans_model = MarianMTModel.from_pretrained(marian_model_name)
tokenizer = MarianTokenizer.from_pretrained(marian_model_name)
tokenizer.save_pretrained(marian_directory)
trans_model.save_pretrained(marian_directory)
else:
# load local model files
trans_model = MarianMTModel.from_pretrained(marian_directory)
tokenizer = MarianTokenizer.from_pretrained(marian_directory)
return trans_model, tokenizer
def get_sample_rate(file_path):
"""Get sample rate of audio channel 0"""
try:
return int(subprocess.run(('ffprobe', '-v', 'error', '-select_streams', 'a:0', '-show_entries', 'stream=sample_rate', '-of', 'default=noprint_wrappers=1:nokey=1', file_path),
check=True, stdout=subprocess.PIPE).stdout)
except CalledProcessError as e:
sys.exit(e)
def make_ffmpeg_command_mic(device: str, filter: bool, sample_rate: int):
command = ('ffmpeg', '-loglevel', 'fatal', '-f', 'pulse', '-i', device,
'-ar', str(sample_rate) , '-ac', '1', '-f', 's16le')
noise_filter = ('-filter:a', 'afftdn=nf=-30')
use_stdout = ('-',)
return command + noise_filter + use_stdout if filter else command + use_stdout
def make_ffmpeg_command_video(in_video: str, video_pipe_name: str, filter: bool) -> str:
# read video file, write to pipe for player, convert to single channel audio and write to stdout for recognizer
command = ('ffmpeg', '-y', '-loglevel', 'fatal', '-i', in_video,
'-movflags', 'empty_moov', '-codec', 'copy', '-f', 'mp4', video_pipe_name,
'-ac', '1', '-f', 'wav',)
noise_filter = ('-filter:a', 'afftdn=nf=-30')
use_stdout = ('-',)
return command + noise_filter + use_stdout if filter else command + use_stdout
def get_text_from_result(result):
return json.loads(result)['text']
def synth(tts_audio_queue, lock, translation, speaker_name):
# lock to prevent tts-server returning a small sentence before a longer sentence that was requested earlier
with lock:
logging.info("Calling TTS...")
result = cTTS.synthesize(translation, speaker_name)
if result:
tts_audio_queue.put(result)
def play(tts_audio_queue, lock, play_tts_command):
play_process = subprocess.Popen(play_tts_command, stdin=subprocess.PIPE)
# lock to prevent playing multiple files at the same time
with lock:
play_process.communicate(tts_audio_queue.get())
def translate_synthesize_play(text, translator, tts_audio_queue, synth_lock, player_lock, speaker_name, play_tts_command):
print_green(str_to_color="Recognized: ", str=text)
translation = translator(text)[0]['translation_text']
print_green(str_to_color="Translated: ", str=translation + "\n")
p_synth = mp.Process(target=synth, args=(tts_audio_queue, synth_lock, translation, speaker_name))
p_synth.start()
p_play = mp.Process(target=play, args=(tts_audio_queue, player_lock, play_tts_command))
p_play.start()
def main_loop_mic(ffmpeg_process, recognizer, translator, tts_audio_queue, synth_lock, player_lock, speaker_name, play_tts_command):
# to prevent printing 'silence' too often
printed_silence = False
while True:
# read ffmpeg stream
audio = ffmpeg_process.stdout.read(4000)
if recognizer.AcceptWaveform(audio):
text = get_text_from_result(recognizer.Result())
if text.strip() not in ("", "the"): # if text.trim() not in ("", "the", "one", "ln", "now", 'köln', 'einen' ...) or just discard all single word recognitions?
translate_synthesize_play(text, translator, tts_audio_queue, synth_lock, player_lock, speaker_name, play_tts_command)
printed_silence = False
else:
if not printed_silence:
print("* silence *\n")
printed_silence = True
def main_loop_video(ffmpeg_process, recognizer, translator, tts_audio_queue, synth_lock, player_lock, speaker_name, play_tts_command):
file_exhausted = False
while not file_exhausted:
text = ""
# read ffmpeg stream
audio = ffmpeg_process.stdout.read(4000)
if recognizer.AcceptWaveform(audio):
text = get_text_from_result(recognizer.Result())
elif len(audio) == 0:
# process last words after file is exhausted (recognizer.AcceptWaveform will not return True)
text = get_text_from_result(recognizer.FinalResult())
file_exhausted = True
if text.strip() not in ("", "the"): # if text.strip() not in ("", "the", "one", "ln", "now", 'köln', 'einen' ...) or just discard all single word recognitions?
translate_synthesize_play(text, translator, tts_audio_queue, synth_lock, player_lock, speaker_name, play_tts_command)
def main():
if not sys.platform == "linux":
sys.exit("Please use a linux OS.")
# disable vosk log prints
SetLogLevel(-1)
logging.basicConfig(format='%(levelname)s:%(message)s', level=logging.WARNING)
args = get_argparser().parse_args()
if args.subcommand == "mic":
print("Setting up recognizer on microphone stream...")
else:
print("Setting up recognizer on video file...")
if args.subcommand == "mic":
if args.list_devices:
print("index name")
subprocess.run(['pactl', 'list', 'short', 'sources'])
sys.exit()
if args.subcommand == "mic":
# maybe a higher value would be useful, vosk example shows it with 16000
sample_rate=16000
else:
logging.info("Getting audio channel's sample rate")
sample_rate = get_sample_rate(args.in_video)
# Initialise recognizer
logging.info("Initialising recognizer...")
rec_model = load_vosk_model(args.in_language)
recognizer = KaldiRecognizer(rec_model, sample_rate)
# Initialise translator
logging.info("Initialising translator...")
marian_model_name, marian_directory, task = get_marian_names(args.in_language)
trans_model, tokenizer = load_trans_models(marian_directory, marian_model_name)
translator = pipeline(task=task, model=trans_model, tokenizer=tokenizer)
# Initialise TTS
logging.info("Starting tts-server...")
tts_model_name = get_tts_name(args.in_language)
tts_server_process = subprocess.Popen(["tts-server", "--model_name", tts_model_name], stdout=subprocess.DEVNULL, stderr=subprocess.STDOUT)
# wait till tts-server finished loading
logging.info("Waiting for tts-server to be available")
curl_cmd = ['curl', 'localhost:5002', '--silent', '--output', '/dev/null']
curl = subprocess.run(curl_cmd)
while curl.returncode != 0:
time.sleep(0.5)
curl = subprocess.run(curl_cmd)
speaker_name = 'p364' if args.in_language == 'de' else None # "--speaker_idx", "p227" "p364" "ED\n"
# pipe for playing the video
video_pipe_name = 'video_pipe'
if os.path.exists(video_pipe_name):
os.remove(video_pipe_name)
os.mkfifo(video_pipe_name)
tts_audio_queue = mp.Queue()
synth_lock = mp.Lock()
player_lock = mp.Lock()
play_tts_command = ('aplay', '-', '-t', 'wav', '--quiet')
if args.subcommand == "mic":
ffmpeg_command = make_ffmpeg_command_mic(args.device, args.filter, sample_rate)
else:
ffmpeg_command = make_ffmpeg_command_video(args.in_video, video_pipe_name, args.filter)
logging.info("Starting ffmpeg...")
ffmpeg_process = subprocess.Popen(ffmpeg_command, stdout=subprocess.PIPE)
if args.subcommand == "video":
logging.info('Starting mpv...')
subprocess.Popen(('mpv', video_pipe_name, '--really-quiet', '--volume=32'))
try:
# check if subprocesses started successfully
time.sleep(2) # without sleep it would check too early
if ffmpeg_process.poll() not in (None, 0): # should just be: if not None ?
raise Exception("ffmpeg failed to start!")
print('#' * 80)
print('Press Ctrl+C to stop')
print('#' * 80)
if args.subcommand == "mic":
main_loop_mic(ffmpeg_process, recognizer, translator, tts_audio_queue, synth_lock, player_lock, speaker_name, play_tts_command)
else:
main_loop_video(ffmpeg_process, recognizer, translator, tts_audio_queue, synth_lock, player_lock, speaker_name, play_tts_command)
except KeyboardInterrupt:
print_green('Done!')
finally:
tts_server_process.kill()
ffmpeg_process.kill()
if args.subcommand == "video":
os.remove(video_pipe_name)
if __name__ == "__main__":
main()