-
Notifications
You must be signed in to change notification settings - Fork 25
/
Copy pathmain.py
253 lines (216 loc) · 12.7 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
import argparse
import os
import random
import warnings
from datetime import datetime
warnings.simplefilter("ignore", UserWarning)
import geoopt
import matplotlib.pyplot as plt
import numpy as np
import torch
import torch.distributed
from torch.utils.tensorboard import SummaryWriter
from torchvision import datasets, models
import datasets
import models
from trainer import Trainer
from utils.utils import neq_load_customized, print_r
plt.switch_backend('agg')
torch.backends.cudnn.benchmark = True
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument('--prefix', default='tmp', type=str, help='prefix of checkpoint filename')
# Model
parser.add_argument('--hyperbolic', action='store_true', help='Hyperbolic mode')
parser.add_argument('--hyperbolic_version', default=1, type=int, help='Controls what layers we make hyperbolic')
parser.add_argument('--resume', default='', type=str, help='path of model to resume')
parser.add_argument('--pretrain', default='', type=str,
help='path of pretrained model. Difference with resume is that we start a completely new '
'training and checkpoint, do not load optimizer, and model loading is not strict')
parser.add_argument('--only_train_linear', action='store_true',
help='Only train last linear layer. Only used (only makes sense) if pretrain is used.')
parser.add_argument('--linear_input', default='features', type=str, help='Input to the last linear layer',
choices=['features_z', 'predictions_c', 'predictions_z_hat'])
parser.add_argument('--network_feature', default='resnet18', type=str, help='Network to use for feature extraction')
parser.add_argument('--final_2dim', action='store_true', help='Feature space with dimensionality 2')
parser.add_argument('--feature_dim', default=-1, type=int,
help='Feature dimensionality. -1 implies same as output of resnet')
parser.add_argument('--not_track_running_stats', action='store_true', help='For the resnet')
# Loss
parser.add_argument('--distance', type=str, default='regular', help='Operation on top of the distance (hyperbolic)')
parser.add_argument('--early_action', action='store_true', help='Train with early action recognition loss')
parser.add_argument('--early_action_self', action='store_true',
help='Only applies when early_action. Train without labels')
parser.add_argument('--pred_step', default=3, type=int, help='How subclips to predict')
parser.add_argument('--pred_future', action='store_true',
help='Predict future subaction (instead of predicting every subaction given present and past)')
parser.add_argument('--cross_gpu_score', action='store_true',
help='Compute the score matrix using as negatives samples from different GPUs')
parser.add_argument('--hierarchical_labels', action='store_true',
help='Works both for training with labels and for testing the accuracy')
parser.add_argument('--test', action='store_true', help='Test system')
parser.add_argument('--test_info', default='compute_accuracy', type=str, help='Test to perform')
parser.add_argument('--no_spatial', action='store_true', help='Mean pool spatial dimensions')
# Data
parser.add_argument('--dataset', default='kinetics', type=str)
parser.add_argument('--seq_len', default=5, type=int, help='Number of frames in each video block')
parser.add_argument('--num_seq', default=8, type=int, help='Number of video blocks')
parser.add_argument('--ds', default=3, type=int, help='Frame downsampling rate')
parser.add_argument('--n_classes', default=0, type=int)
parser.add_argument('--use_labels', action='store_true', help='Return labels in dataset and use supervised loss')
parser.add_argument('--action_level_gt', action='store_true',
help='As opposed to subaction level. If True, we do not evaluate subactions or hierarchies')
parser.add_argument('--img_dim', default=128, type=int)
parser.add_argument('--path_dataset', type=str, default='')
parser.add_argument('--path_data_info', type=str, default='')
# Training
parser.add_argument('--batch_size', default=4, type=int)
parser.add_argument('--lr', default=1e-3, type=float, help='Learning rate')
parser.add_argument('--wd', default=1e-5, type=float, help='Weight decay')
parser.add_argument('--epochs', default=10, type=int, help='Number of total epochs to run')
parser.add_argument('--start_epoch', default=0, type=int, help='Manual epoch number (useful on restarts)')
parser.add_argument('--reset_lr', action='store_true', help='Reset learning rate when resume training?')
parser.add_argument('--partial', default=1., type=float, help='Percentage of training set to use')
# Other
parser.add_argument('--path_logs', type=str, default='logs', help='Path to store logs and checkpoints')
parser.add_argument('--print_freq', default=5, type=int, help='Frequency of printing output during training')
parser.add_argument('--verbose', action='store_true', help='Print information')
parser.add_argument('--debug', action='store_true', help='Debug. Do not store results')
parser.add_argument('--seed', type=int, default=0, help='Random seed for initialization')
parser.add_argument('--local_rank', type=int, default=-1, help='Local rank for distributed training on gpus')
parser.add_argument('--fp16', action='store_true', help='Whether to use 16-bit float precision instead of 32-bit. '
'Only affects the Euclidean layers')
parser.add_argument('--fp64_hyper', action='store_true', help='Whether to use 64-bit float precision instead of '
'32-bit for the hyperbolic layers and operations,'
'Can be combined with --fp16')
parser.add_argument('--num_workers', default=32, type=int, help='number of workers for dataloader')
args = parser.parse_args()
if args.early_action_self:
assert args.early_action, 'Read the explanation'
assert args.pred_step == 1, 'We only want to predict the last one'
if args.use_labels:
assert args.pred_step == 0, 'We want to predict a label, not a feature'
if args.early_action and not args.early_action_self:
assert args.use_labels
assert args.action_level_gt, 'Early action recognition implies only action level, not subaction level'
if args.action_level_gt:
assert args.linear_input != 'features_z', 'We cannot get a representation for the whole clip with features_z'
assert args.use_labels
if args.pred_future:
assert not args.action_level_gt, 'Predicting the future implies predicting subactions'
assert args.linear_input != 'features_z', 'We need context from previous frames'
if args.local_rank == -1:
args.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
args.n_gpu = args.step_n_gpus = torch.cuda.device_count()
else:
torch.cuda.set_device(args.local_rank)
args.device = torch.device("cuda", args.local_rank)
args.n_gpu = 1
torch.distributed.init_process_group(backend='nccl', init_method='env://')
args.step_n_gpus = torch.distributed.get_world_size()
if args.test:
torch.backends.cudnn.deterministic = True
if args.not_track_running_stats:
assert args.batch_size > 1
return args
def main():
args = get_args()
# Fix randomness
seed = args.seed
torch.cuda.manual_seed_all(seed)
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
# ---------------------------- Prepare model ----------------------------- #
if args.local_rank <= 0:
print_r(args, 'Preparing model')
model = models.Model(args)
model = model.to(args.device)
params = model.parameters()
optimizer = geoopt.optim.RiemannianAdam(params, lr=args.lr, weight_decay=args.wd, stabilize=10)
scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=[80, 150], gamma=0.1)
best_acc = 0
iteration = 0
# --- restart training --- #
if args.resume:
if os.path.isfile(args.resume):
print_r(args, f"=> loading resumed checkpoint '{args.resume}'")
checkpoint = torch.load(args.resume, map_location=torch.device('cpu'))
args.start_epoch = checkpoint['epoch']
iteration = checkpoint['iteration']
best_acc = checkpoint['best_acc']
model.load_state_dict(checkpoint['state_dict'], strict=True)
scheduler.load_state_dict(checkpoint['scheduler'])
if not args.reset_lr: # if didn't reset lr, load old optimizer
optimizer.load_state_dict(checkpoint['optimizer'])
else:
print_r(args, f'==== Restart optimizer with a learning rate {args.lr} ====')
print_r(args, f"=> loaded resumed checkpoint '{args.resume}' (epoch {checkpoint['epoch']})")
else:
print_r(args, f"[Warning] no checkpoint found at '{args.resume}'", print_no_verbose=True)
elif args.pretrain: # resume overwrites this
if os.path.isfile(args.pretrain):
print_r(args, f"=> loading pretrained checkpoint '{args.pretrain}'")
checkpoint = torch.load(args.pretrain, map_location=torch.device('cpu'))
model = neq_load_customized(args, model, checkpoint['state_dict'], parts='all',
size_diff=args.final_2dim or args.feature_dim != -1)
print_r(args, f"=> loaded pretrained checkpoint '{args.pretrain}' (epoch {checkpoint['epoch']})")
else:
print_r(args, f"=> no checkpoint found at '{args.pretrain}'", print_no_verbose=True)
if args.only_train_linear:
for name, param in model.named_parameters(): # deleted 'module'
if 'network_class' not in name:
param.requires_grad = False
print_r(args, '\n==== parameter names and whether they require gradient ====\n')
for name, param in model.named_parameters():
print_r(args, (name, param.requires_grad))
print_r(args, '\n==== start dataloading ====\n')
if args.local_rank != -1:
from torch.nn.parallel import DistributedDataParallel as DDP
model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model) if not args.not_track_running_stats else model
model = DDP(model, device_ids=[args.local_rank], output_device=args.local_rank)
args.parallel = 'ddp'
elif args.n_gpu > 1:
model = torch.nn.DataParallel(model)
args.parallel = 'dp'
else:
args.parallel = 'none'
# ---------------------------- Prepare dataset ----------------------------- #
splits = ['train', 'val', 'test']
loaders = {split:
datasets.get_data(args, split, return_label=args.use_labels,
hierarchical_label=args.hierarchical_labels, action_level_gt=args.action_level_gt,
num_workers=args.num_workers, path_dataset=args.path_dataset,
path_data_info=args.path_data_info)
for split in splits}
# setup tools
img_path, model_path = set_path(args)
writer_val = SummaryWriter(
log_dir=os.path.join(img_path, 'val') if not args.debug else '/tmp') if args.local_rank <= 0 else None
writer_train = SummaryWriter(
log_dir=os.path.join(img_path, 'train') if not args.debug else '/tmp') if args.local_rank <= 0 else None
# ---------------------------- Prepare trainer and run ----------------------------- #
if args.local_rank <= 0:
print_r(args, 'Preparing trainer')
trainer = Trainer(args, model, optimizer, loaders, iteration, best_acc, writer_train, writer_val, img_path,
model_path, scheduler)
if args.test:
trainer.test()
else:
trainer.train()
def set_path(args):
if args.resume:
exp_path = os.path.dirname(os.path.dirname(args.resume))
else:
current_time = datetime.now().strftime('%Y%m%d_%H%M%S')
exp_path = os.path.join(args.path_logs, f"log_{args.prefix}/{current_time}")
img_path = os.path.join(exp_path, 'img')
model_path = os.path.join(exp_path, 'model')
if args.local_rank <= 0 and not args.debug and not args.test:
if not os.path.exists(img_path):
os.makedirs(img_path)
if not os.path.exists(model_path):
os.makedirs(model_path)
return img_path, model_path
if __name__ == '__main__':
main()