-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathload_sam_json.py
66 lines (53 loc) · 2.17 KB
/
load_sam_json.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
import glob
import os.path as osp
from torch.utils.data import Dataset
import torch
import cv2
import torch
from segment_anything.utils.transforms import ResizeLongestSide
from segment_anything import sam_model_registry
from typing import Any, Dict, List, Tuple
class SamDataset(Dataset):
def __init__(self, root_folder: str, dataset_size, val=False):
self.val = val
self.dataset_size = dataset_size
self._root_folder = root_folder
self._image_paths = sorted(glob.glob(osp.join(root_folder, "*.jpg")))
self._json_paths = sorted(glob.glob(osp.join(root_folder, "*.json")))
self.transform = ResizeLongestSide(1024)
self.sam = sam_model_registry['vit_b'](checkpoint=None)
# self.sam = Sam(image_encoder=None, prompt_encoder=None, mask_decoder=None, pixel_mean=[123.675, 116.28, 103.53],
# pixel_std=[58.395, 57.12, 57.375])
def __len__(self):
return self.dataset_size
def __getitem__(self, index):
if not self.val:
image = cv2.imread(self._image_paths[index])
elif self.val:
image = cv2.imread(self._image_paths[index])
if not self.val:
annot = self._json_paths[index]
elif self.val:
annot = self._json_paths[index]
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
input_image = self.transform.apply_image(image)
input_image_torch = torch.as_tensor(input_image)
transformed_image = input_image_torch.permute(2, 0, 1).contiguous()#[None, :, :, :]
input_image = self.sam.preprocess(transformed_image)
original_image_size = image.shape[:2]
input_size = tuple(transformed_image.shape[-2:])
if not self.val:
return {
"id": self._image_paths[index],
"input_image": input_image,
"input_size":input_size,
"original_image_size":original_image_size,
"annot":annot
}
return {
"id": self._image_paths[index],
"input_image": input_image,
"input_size":input_size,
"original_image_size":original_image_size,
"annot":annot
}