-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathread_data.py
269 lines (186 loc) · 9.54 KB
/
read_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
import os
import sys
import soundfile
import librosa
import pyworld
import pandas as pd
import numpy as np
import azapi
from extract_features import extract_timbre_data, extract_phoneme_data
from pre_process_data import process_frequency, process_and_save, match_input_columns
from frequency_tools import extract_notes, notes_to_number, get_note_data, note_to_frequency
from args import parser
params = parser.parse_args()
# Start processing the data
def pre_process(file_name, training_dir):
audio_file_name = training_dir + file_name + '.wav'
lyrics_file_name = training_dir + 'Transcripts/' + file_name + '.txt'
audio_data, sample_rate = soundfile.read(audio_file_name)
audio_data = librosa.resample(audio_data, sample_rate, params.sample_rate)
sample_rate = params.sample_rate
harvest_frequency, timing = pyworld.harvest(audio_data, sample_rate, f0_floor=params.min_freq,
f0_ceil=params.max_freq, frame_period=params.frame_period)
frequency = pyworld.stonemask(audio_data, harvest_frequency, timing, sample_rate)
audio_length = len(frequency)
phoneme_data = extract_phoneme_data([audio_file_name, lyrics_file_name, audio_length])
frequency_data = process_frequency(frequency)
label_data = pd.concat([phoneme_data, frequency_data], axis=1)
spectral_data, aperiodic_data = extract_timbre_data([audio_data, frequency, timing, sample_rate])
return [spectral_data, aperiodic_data, label_data, frequency]
def extract_f_labels(frequency, f_data, label_data, note_file=None, de_tune=False):
if note_file is None:
notes, _, _ = extract_notes(frequency)
if de_tune:
notes, frequency = f_data.de_tune(notes, frequency)
else:
notes = read_notes(note_file, label_data.shape[0])
notes = notes_to_number(notes)
frequency = note_to_frequency(notes)
notes = np.asarray(notes)
frequency = np.asarray(frequency)
notes, note_timings = get_note_data(notes)
notes = np.expand_dims(notes, axis=0)
_, note_data = f_data.shift_data(frequency, notes, shift=False)
note_data = np.squeeze(note_data, axis=0)
f_label_data = label_data[:, 256:]
f_label_data = np.concatenate([note_data, note_timings, f_label_data], axis=1)
return f_label_data, frequency
# Identify the training data
def extract_transcripts(data_dir, index_name="index.xlsx"):
training_dir = data_dir + '/'
index_file_location = training_dir + index_name
transcript_location = training_dir + 'Transcripts/'
if not os.path.isdir(transcript_location):
os.mkdir(transcript_location)
index_file_type = index_name.split(".")[1]
if index_file_type == "xlsx" or index_file_type == "xls":
sound_index = pd.read_excel(index_file_location, header=None, index_col=False)
else:
sound_index = pd.read_csv(index_file_location, header=None, index_col=False, skip_blank_lines=True)
file_list = []
for row in sound_index.itertuples():
lyrics_file_name = transcript_location + str(row[1]) + '.txt'
text_file = open(lyrics_file_name, "w")
if str(row[2]) == '':
lyrics = extract_lyrics(row[3], row[4])
else:
lyrics = row[2]
text_file.write(lyrics)
text_file.close()
file_list.append(str(row[1]))
return file_list, training_dir
# Directly load the training data if already processed
def load_training_data(vocal_name):
directory = params.training_dir + '/' + vocal_name
if not os.path.isdir(directory):
sys.exit("The training data folder:" + directory + " does not exist!")
spectral_data = np.load(directory + "/spectral_data.npy", allow_pickle=True)
aperiodic_data = np.load(directory + "/aperiodic_data.npy", allow_pickle=True)
label_data = np.load(directory + "/label_data.npy", allow_pickle=True)
cutoff_points = np.load(directory + "/cutoff_points.npy", allow_pickle=True)
frequency = np.load(directory + "/frequency.npy", allow_pickle=True)
return spectral_data, aperiodic_data, label_data, cutoff_points, frequency
def read_data(data_dir, index_name="index.xlsx", gui_screen=None):
file_list, training_dir = extract_transcripts(data_dir, index_name)
spectral_data = pd.DataFrame()
aperiodic_data = pd.DataFrame()
label_data = pd.DataFrame()
cutoff_points = []
frequency = []
file_count = 0
total_files = len(file_list)
for file in file_list:
if gui_screen is not None:
gui_screen.ids.dataset_progress_file.text = f'Processing file: {file}.wav'
read_spectral_data, read_aperiodic_data, read_label_data, read_frequency = pre_process(file, training_dir)
spectral_data = pd.concat([spectral_data, read_spectral_data], axis=0, ignore_index=True)
aperiodic_data = pd.concat([aperiodic_data, read_aperiodic_data], axis=0, ignore_index=True)
label_data = pd.concat([label_data, read_label_data], axis=0, ignore_index=True)
cutoff_points.append(spectral_data.shape[0])
frequency.extend(read_frequency)
file_count += 1
if gui_screen is not None:
if gui_screen.kill_signal:
gui_screen.ids.dataset_progress_status.text = "Data processing cancelled!"
gui_screen.ids.dataset_progress_file.text = "Press 'Finish' to return back to menu"
gui_screen.ids.dataset_finish_button.disabled = False
gui_screen.ids.dataset_cancel_button.disabled = True
sys.exit()
progress = int((file_count/total_files)*100)
gui_screen.ids.dataset_progress_bar.value = progress
gui_screen.ids.dataset_progress_value.text = f'{progress}% Complete'
cutoff_points = np.asarray(cutoff_points)
frequency = np.asarray(frequency)
return spectral_data, aperiodic_data, label_data, cutoff_points, frequency
# Read the training data
def read_training_data(data_dir, vocal_name='', index_name="index.xlsx", gui_screen=None, load=False):
if not load:
spectral_data, aperiodic_data, label_data, cutoff_points, frequency = read_data(data_dir, index_name,
gui_screen)
data = [spectral_data, aperiodic_data, label_data, cutoff_points, frequency]
spectral_data, aperiodic_data, label_data, column_list, frequency = process_and_save(data, vocal_name)
if gui_screen is not None:
gui_screen.ids.dataset_progress_status.text = "Data processing complete!"
gui_screen.ids.dataset_progress_file.text = "Press 'Finish' to return back to menu"
gui_screen.ids.dataset_finish_button.disabled = False
gui_screen.ids.dataset_cancel_button.disabled = True
else:
spectral_data, aperiodic_data, label_data, cutoff_points, frequency = load_training_data(vocal_name)
return spectral_data, aperiodic_data, label_data, cutoff_points, frequency
def read_test_data(trained_vocal_name, f_data, compare=False, note_file=False, index_loc="Dataset/Test", de_tune=False,
index_name="index.xlsx"):
spectral_data, aperiodic_data, label_data, cutoff_points, frequency = read_data(index_loc, index_name=index_name)
data = [spectral_data, aperiodic_data, label_data, cutoff_points, frequency]
spectral_data, aperiodic_data, label_data, column_list, frequency = process_and_save(data, trained_vocal_name,
save=False)
label_data = match_input_columns(column_list, label_data)
if note_file:
file_type = index_name.split('.')[1]
note_loc = index_loc + '/notes.' + file_type
if not os.path.exists(note_loc):
note_loc = None
else:
note_loc = None
f_label_data, frequency = extract_f_labels(frequency, f_data, label_data, note_file=note_loc, de_tune=de_tune)
if compare:
return spectral_data, aperiodic_data, label_data, frequency
else:
return label_data, f_label_data, frequency
def add_frequency_data(label_data, frequency):
label_data = label_data[:, 256:]
frequency_data = process_frequency(frequency)
frequency_data = np.asarray(frequency_data).astype(np.int)
label_data = np.concatenate([frequency_data, label_data], axis=1)
return label_data
def read_notes(note_index, audio_length):
file_name = os.path.basename(note_index)
file_type = file_name.split('.')[1]
if file_type == 'xlsx' or file_type == 'xls':
sound_index = pd.read_excel(note_index, header=None, index_col=False)
else:
sound_index = pd.read_csv(note_index, header=None, index_col=False, skip_blank_lines=True)
note_align = list(sound_index.itertuples())
step = params.frame_period / 1000
note_position = 0
note_array = []
x = 0
while x < audio_length:
if note_align[note_position][1] <= x * step:
if note_align[note_position][2] > x * step:
note_array.append(note_align[note_position][3])
x = x + 1
elif note_position + 1 < len(note_align):
note_position = note_position + 1
else:
x = x + 1
note_array.append(note_align[note_position][3])
else:
note_array.append("N")
x = x + 1
return note_array
def extract_lyrics(artist, title):
lyric_api = azapi.AZlyrics('google', accuracy=0.5)
lyric_api.artist = artist
lyric_api.title = title
lyrics = lyric_api.getLyrics(save=False)
return lyrics