-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdanlog.txt
503 lines (349 loc) · 12.3 KB
/
danlog.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
## let's add some parameter sweeps, as per reviewer request
## reviewer 2 request that we tinker with the tuning parameters
## the parameters that were not swept in our original efforts are:
## parameters available to explore are:
endophytism
ws
endodisp
decompdisp
leafdisp
leaffall
numdecomp
numendo
endoloss
newwood
woodfreq
width
kappa
sigma
mu
nuke
## nuke is not really a parameter of interest
## neither is width
## the ones that are already explored in the notebooks are:
endophytism
ws
endodisp
decompdisp
endoloss
newwood
## so we need to explore
leafdisp
leaffall
numdecomp
numendo
woodfreq
width
kappa
sigma
mu
## so just work through these, one-by-one
## start by playing with leafdisp
## how do we do a graphical run again?
## our runs usually went under this script, which I think I
## just kept modifying for each new use I wanted to peek at.
python3 ./forestrun.py
## had to update some syntax, but seems to work okay. So what are our settings
## for sweeping leafdisp? And where are these kept?
## all kept in FAmodel.py. Defaults are update with notebook.
## if we want to run using these defaults:
python3 runFA.py -sims 1
python3 runFA.py -sims 3 -steps 3
## how can we save and graph the results?
python3
import pickle
import os
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
runs = pd.read_pickle('run.2020-03-18_15.28.58.317963.p')
runs = pd.read_pickle('run.2020-03-18_15.43.02.290763.p')
## this is a list of dataframes:
runs[0].head(5)
runs[0]
lvls = sorted(list(runs.keys()))
## we made a function to process these lists of dataframes a bit:
import plotparsers as pr
pr.pldata(runs[0],lvl=3)
pr.pldata_single(runs[0])
pr.pldata()
## not working. What's different? Let's look at one of our old results...
aa = pd.read_pickle('sweeps/results/onefungusdisp/onefungusdisp.p')
type(aa[1])
len(aa[1])
## ah. each level of the parameter that is being swept has its own key.
##
aa[1][0]
## the value that is contained for each key is a list. The length of
## the list is determined by how many simulations were done, usually
## 100.
## Each element of that list is a dataframe with a row for each time
## step, usually fifty.
## so for us, we need to run 100 simulations, 50 time steps each,
## for each parameter of interest. We can set up one and see how
## long it takes...seems precarious to run from ssh.
## we can try...
ssh [email protected] "ls -la"
python3 runFA.py -sims 3 -steps 3
ssh [email protected] "python3 /Users/danthomas/Documents/FA_ABM/runFA.py -sims 1 -steps 1"
## nope. what about a shell script?
############################################################
#!/usr/bin/env sh
cd /Users/danthomas/Documents/FA_ABM
/usr/local/bin/python3 /Users/danthomas/Documents/FA_ABM/runFA.py -sims 1 -steps 1
############################################################
## from home:
ssh [email protected] sh "/Users/danthomas/Documents/FA_ABM/testScript.sh"
## works.
## we want to sweep through a set of values....
## to explore leafdisp, what makes sense? I think it makes sense to
## do as was done with the endophyte loss sweep - give the endophytes
## a slight advantage, and see what it takes to erode or maintain that
## advantage.
## leaf dispersal is set at a default of 4. We can sweep from 0 to 8, seems
## reasonable.
## how to code that? Mesa has a builtin batch job script, but I think
## our custon runFA.py is probably up for the job, too:
## in our other sweeps, we did 100 simulation runs, 50 steps each
## looks like the lab mac has 4 logical cores, so we can safely send
## it 3 jobs?
## so maybe 3 bash scripts that runs through 3 levels each (0,1,2),
## (3,4,5) and (6,7,8)?
## so...
#########################################
#!/usr/bin/env bash
cd /Users/danthomas/Documents/FA_ABM
for i in {0..2}
do
echo $i
/usr/local/bin/python3 /Users/danthomas/Documents/FA_ABM/runFA.py \
-sims 100 \
-steps 50 \
-endodisp 3.0 \
-leafdisp $i \
-fileout "leafdisp"$i
done
#########################################
## try it:
ssh [email protected] "/bin/bash /Users/danthomas/Documents/scriptsABM/leafdisp0-2.sh"
## seems to be working... what happens if we give it another to chew on?
########################################
#!/usr/bin/env bash
cd /Users/danthomas/Documents/FA_ABM
for i in {3..5}
do
/usr/local/bin/python3 /Users/danthomas/Documents/FA_ABM/runFA.py \
-sims 100 \
-steps 50 \
-endodisp 3.0 \
-leafdisp $i \
-fileout "leafdisp"$i
done
########################################
ssh [email protected] "/bin/bash /Users/danthomas/Documents/scriptsABM/leafdisp3-5.sh"
## seems to work... so setup the last installment, cross fingers, go to bed.
ssh [email protected] "/bin/bash /Users/danthomas/Documents/scriptsABM/leafdisp6-8.sh"
## tomorrow - remember to clean up git, pull/push everything.
## oh, wait. Didn't work. The loop breaks if I close my shell on this side.
## fuck. Why is it so hard to do this?
## I guess I can leave my computer on...
## what is left, then? edit the scripts to exclude what's already done...
## can't stay up so let's just pile it on and hope we don't freeze up the computer:
#ssh [email protected] "/bin/bash /Users/danthomas/Documents/scriptsABM/leafdisp0-2.sh"
#ssh [email protected] "/bin/bash /Users/danthomas/Documents/scriptsABM/leafdisp3-5.sh"
#ssh [email protected] "/bin/bash /Users/danthomas/Documents/scriptsABM/leafdisp6-8.sh"
## that last run failed. redo?
python3 /Users/danthomas/Documents/FA_ABM/runFA.py \
-sims 100 \
-steps 50 \
-endodisp 3.0 \
-leafdisp 8.0 \
-fileout "leafdisp8"
## otherwise, worked well, I think. Can we make a graphic out of one of these,
## and make sure?
ls /home/daniel/Documents/submissions/FAabm/FA_ABM/sweeps/results/leafdisp
## we have all but one run done... let's
python3
import pickle
import os
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import plotparsers as pr
plt.ion()
os.chdir("/home/daniel/Documents/submissions/FAabm/FA_ABM/sweeps/results/leafdisp")
## how can we combine all of these files into a dictionary with levels as keys?
## for the next round of simulations, let's put an easy way to divide up the
## strings. For this one, I guess we may have to do this manually. We want
## a dataframe for each run, a list of runs for each level, and a dictionary
## of all the lists as values, with their level as the key
levels = []
for i in os.listdir():
if ".p" in i:
print (i)
i=i.split('2020')[0].split('leafdisp')[1]
i=int(i)
print(i)
levels.append(i)
levels.sort()
## looks like we have doubles of 4, 5, 7
levels = list(set(levels))
## check logs...all of these completed to 100 sims, might as well use the
## extra data
## combine the doubles if we have them
aa = pd.read_pickle("leafdisp42020-03-18_23.24.26.009182.p")
bb = pd.read_pickle("leafdisp42020-03-18_23.31.24.077112.p")
aa.extend(bb)
## now write it back out?
pickle.dump(aa, open('leafdisp42020-combined.p', 'wb'))
aa = pd.read_pickle('leafdisp42020-combined.p') ## works
## repeat this with 5 and 7:
aa = pd.read_pickle("leafdisp52020-03-19_00.24.35.275498.p")
bb = pd.read_pickle("leafdisp52020-03-19_00.39.06.402233.p")
aa.extend(bb)
pickle.dump(aa, open('leafdisp52020-combined.p', 'wb'))
aa = pd.read_pickle("leafdisp72020-03-18_23.25.23.043032.p")
bb = pd.read_pickle("leafdisp72020-03-19_00.12.20.460393.p")
aa.extend(bb)
pickle.dump(aa, open('leafdisp72020-combined.p', 'wb'))
## so can we fill a dictionary while reading in the files?
os.chdir("/home/daniel/Documents/submissions/FAabm/FA_ABM/sweeps/results/leafdisp")
leafDispDic = {}
levels = []
for i in os.listdir():
if ".p" in i:
filename = i
i=i.split('2020')[0].split('leafdisp')[1]
i=int(i)
print(i)
print(filename)
leafDispDic[i] = pd.read_pickle(filename)
## did that work? looks like it:
leafDispDic.keys()
type(leafDispDic[6])
len(leafDispDic[8])
## can we now use our plotter functions?
runs = leafDispDic
lvls = sorted(list(runs.keys())) ## lvls of the run, from large to small
runplotdata = {}
for i in lvls:
runplotdata[i] = pr.pldata(runs, i)
## make a plotting function:
def plotComp(ax, runs, level, title=None, titletextsize=20, legendtextsize=20):
ax.set_ylim(0,50)
ax.plot(x, runs[level]['decomp_means'],
'-',
c='red',
label=('decomposer'),
)
ax.fill_between(x, runs[level]['decomp_updev'],
runs[level]['decomp_downdev'],
linewidth=0,
facecolor='red',
alpha = 0.3,
)
ax.plot(x, runs[level]['endo_means'],
'-',
c='blue',
label=('endophyte'),
)
ax.fill_between(x, runs[level]['endo_updev'],
runs[level]['endo_downdev'],
linewidth=0,
facecolor='blue',
alpha = 0.3,
)
handles, labels = ax.get_legend_handles_labels()
ax.legend(handles, labels, prop={'size':legendtextsize})
ax.set_ylabel("Substrates occupied")
ax.set_xlabel("Timestep")
ax.set_title('{}={}'.format(title,level), {'fontsize':titletextsize})
fig,axes = plt.subplots(3,3,
figsize=(25, 40),
sharex=True,
sharey=True
)
for i in runplotdata.keys():
aa=plotComp(axes.flatten()[i], runplotdata, i, "leafdisp", 15, 10)
plt.tight_layout()
## well, that's cool. The function, not the results.
## results are pretty much expected.
#######################
## let's set up another sweep
## let's compare what happens with a more
## seasonal system, where leaf fall
## occurs in a single "autumn" time
## step.
## what would this look like?
## 100 sims of the default and ...
## 100 sims of leaffall = 4?
## actually, we need to review the code a little...confirm
## that leaffall works how we think it does...
## yes. if leaffall = 4, then on timesteps that are
## multiples of 4, leaf drop occurs. So leaffall
## is the number of days between leaf fall, and
## leaffall=4 is equivalent to one season per year of
## leaf drop.
## but we also want to beef up leaf dispersal a bit,
## because during leaf fall at this time, many more
## leaves fall, increasing the chance of incoulation
## via leaf, say to d=6
## I think this would look like:
python3 /Users/danthomas/Documents/FA_ABM/runFA.py \
-sims 100 \
-steps 50 \
-leaffall 4 \
-leafdisp 6 \
-fileout "leaffall4__"
## but let's also try leaf dispersal at 4 and 5, so a minisweep
#ssh [email protected] "/bin/bash /Users/danthomas/Documents/scriptsABM/leaffall4.sh"
############################################
## priority effects
## what sweep is next?
## what we call priority effects test - does have multiple
## additional fungi on your side to begin with help you
## win competition experiments?
## using the default settings otherwise, sweep
## the number of additional initial fungi. This will
## be two sweeps, one for decomps, one for viaphytes
##
for i in 1 2 3 4 5 10 15; do
python3 /Users/danthomas/Documents/FA_ABM/runFA.py \
-sims 100 \
-steps 50 \
-numdecomp i \
-fileout "numdecomp"$i"__"
done
## and the same for viaphytes
ssh [email protected] "/bin/bash /Users/danthomas/Documents/scriptsABM/priorityDecomp.sh"
ssh [email protected] "/bin/bash /Users/danthomas/Documents/scriptsABM/priorityViaphyte.sh"
## these are going to be in the home of directory on cooley comp
## forgot to change directory
############################################
## woodfreq
## let's sweep through woodfreq,
## because fuck why not
cd /Users/danthomas/Documents/FA_ABM
for i in {1..4}; do
/usr/local/bin/python3 /Users/danthomas/Documents/FA_ABM/runFA.py \
-sims 100 \
-steps 50 \
-woodfreq $i \
-fileout "woodfreq"$i"__"
done
ssh [email protected] "/bin/bash /Users/danthomas/Documents/scriptsABM/woodfreq.sh"
############################################
## tomorrow - incorporate the leafdisp=8 into the
## leafdisp sweep
## look at leaffall result, if it makes sense,
## "sweep" two other settings at leaffal=4 - leafdisp={4,5}
## if results look good from all available drafts,
## set up remaining sweeps?:
width
## not going to do width, we'll keep the spatial
## scale the same
kappa
sigma
mu
## not sure how to play with these, these are somewhat
## like