forked from daviddao/spatial-transformer-tensorflow
-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathexample_project.py
63 lines (52 loc) · 2.11 KB
/
example_project.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
from scipy import ndimage
import tensorflow as tf
from spatial_transformer import ProjectiveTransformer
import numpy as np
import scipy.misc
# Input image retrieved from:
# https://raw.githubusercontent.com/skaae/transformer_network/master/cat.jpg
im = ndimage.imread('data/cat.jpg')
im = im / 255.
im = im.astype('float32')
# input batch
batch_size = 4
batch = np.expand_dims(im, axis=0)
batch = np.tile(batch, [batch_size, 1, 1, 1])
# input placeholder
x = tf.placeholder(tf.float32, [batch_size, im.shape[0], im.shape[1], im.shape[2]])
# Let the output size of the projective transformer be quarter of the image size.
outsize = (int(im.shape[0]/4), int(im.shape[1]/4))
# Projective Transformation Layer
stl = ProjectiveTransformer(outsize)
# Tilt the image
initial = np.array([1.5, 0.2, -0.2,
0.2, 1.5, 0.0,
-0.3, 0.3]).astype('float32')
initial = np.reshape(initial, [1, stl.param_dim])
# %% Run session
with tf.Session() as sess:
with tf.device("/cpu:0"):
with tf.variable_scope('spatial_transformer') as scope:
# Random jitter of the parameters
theta = initial + 0.05*tf.random_normal([batch_size, stl.param_dim])
result = stl.transform(x, theta)
# %% Run session
sess.run(tf.global_variables_initializer())
result_ = sess.run(result, feed_dict={x: batch})
# save our result
for i in range(result_.shape[0]):
scipy.misc.imsave('projective' + str(i) + '.png', result_[i])