-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy patheval.py
91 lines (63 loc) · 2.5 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
import torch
from tqdm import tqdm
from attack import PGD
import argparse
from models import PreActResNet18
from torchvision.models import resnet50
from utils import torch_accuracy, AvgMeter
from dataset import Cifar, Cifar_EXT, ImageNet
import numpy as np
from collections import OrderedDict
parser = argparse.ArgumentParser(description='distributed adversarial training')
parser.add_argument('--dataset', default='cifar', choices=['cifar', 'imagenet'],
help='dataset cifar or imagenet')
parser.add_argument('--dataset-path', type=str,
help='dataset folder')
parser.add_argument('--checkpoint', type=str,
help='model checkpoint path')
def eval(net, data_loader, DEVICE=torch.device('cuda:0'), es=(8.0, 20)):
net.eval()
pbar = tqdm(data_loader)
clean_accuracy = AvgMeter()
adv_accuracy = AvgMeter()
pbar.set_description('Evaluating')
eps, step = es
at_eval = PGD(eps=eps/ 255.0, sigma=2/255.0, nb_iter=step)
for (data, label) in pbar:
data = data.to(DEVICE)
label = label.to(DEVICE)
with torch.no_grad():
pred = net(data)
acc = torch_accuracy(pred, label, (1,))
clean_accuracy.update(acc[0].item(), acc[0].size(0))
adv_inp = at_eval.attack(net, data, label)
with torch.no_grad():
pred = net(adv_inp)
acc = torch_accuracy(pred, label, (1,))
adv_accuracy.update(acc[0].item(), acc[0].size(0))
pbar_dic = OrderedDict()
pbar_dic['standard test acc'] = '{:.2f}'.format(clean_accuracy.mean)
pbar_dic['robust acc'] = '{:.2f}'.format(adv_accuracy.mean)
pbar.set_postfix(pbar_dic)
return clean_accuracy.mean, adv_accuracy.mean
def main():
args = parser.parse_args()
print(args)
DEVICE = torch.device('cuda:0')
if args.dataset == 'cifar':
net = PreActResNet18()
batch_size = 2048
ds_train, ds_val, sp_train = Cifar_EXT.get_loader(batch_size, 1, 0, args.dataset_path)
es =(8.0, 10)
elif args.dataset == 'imagenet':
batch_size = 512
net = resnet50()
ds_train, ds_val, sp_train = ImageNet.get_loader(batch_size, 1, 0, args.dataset_path)
es = (2.0, 4)
checkpoint_path = args.checkpoint
torch.backends.cudnn.benchmark = True
net.load_state_dict(torch.load(checkpoint_path)['state_dict'])
net = torch.nn.DataParallel(net).to(DEVICE)
eval(net, ds_val, DEVICE, es)
if __name__ == "__main__":
main()