-
Notifications
You must be signed in to change notification settings - Fork 39
/
Copy pathconnection.go
691 lines (640 loc) · 20.5 KB
/
connection.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
/*
* HoneyBadger core library for detecting TCP injection attacks
*
* Copyright (C) 2014, 2015 David Stainton
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
package HoneyBadger
import (
"log"
"sync"
"time"
"github.com/david415/HoneyBadger/types"
)
const (
// Stop looking for handshake hijack after several
// packets have traversed the connection after entering
// into TCP_DATA_TRANSFER state
FIRST_FEW_PACKETS = 12
// TCP states
TCP_UNKNOWN = 0
TCP_CONNECTION_REQUEST = 1
TCP_CONNECTION_ESTABLISHED = 2
TCP_DATA_TRANSFER = 3
TCP_CONNECTION_CLOSING = 4
TCP_INVALID = 5
TCP_CLOSED = 6
// initiating TCP closing finite state machine
TCP_FIN_WAIT1 = 0
TCP_FIN_WAIT2 = 1
TCP_TIME_WAIT = 2
TCP_CLOSING = 3
// initiated TCP closing finite state machine
TCP_CLOSE_WAIT = 0
TCP_LAST_ACK = 1
)
type ConnectionFactory interface {
Build(ConnectionOptions) ConnectionInterface
}
type DefaultConnFactory struct {
}
func (f *DefaultConnFactory) Build(options ConnectionOptions) ConnectionInterface {
conn := Connection{
packetCount: 0,
ConnectionOptions: options,
attackDetected: false,
state: TCP_UNKNOWN,
skipHijackDetectionCount: FIRST_FEW_PACKETS,
clientNextSeq: types.InvalidSequence,
serverNextSeq: types.InvalidSequence,
ClientStreamRing: types.NewRing(options.MaxRingPackets),
ServerStreamRing: types.NewRing(options.MaxRingPackets),
clientFlow: &types.TcpIpFlow{},
serverFlow: &types.TcpIpFlow{},
}
conn.ClientCoalesce = NewOrderedCoalesce(conn.AttackLogger, conn.clientFlow, conn.PageCache, conn.ClientStreamRing, conn.MaxBufferedPagesTotal, conn.MaxBufferedPagesPerConnection/2, conn.DetectCoalesceInjection, &conn.attackDetected)
conn.ServerCoalesce = NewOrderedCoalesce(conn.AttackLogger, conn.serverFlow, conn.PageCache, conn.ServerStreamRing, conn.MaxBufferedPagesTotal, conn.MaxBufferedPagesPerConnection/2, conn.DetectCoalesceInjection, &conn.attackDetected)
return &conn
}
type ConnectionInterface interface {
Close()
GetClientFlow() *types.TcpIpFlow
SetPacketLogger(types.PacketLogger)
GetLastSeen() time.Time
ReceivePacket(*types.PacketManifest)
}
type PacketDispatcher interface {
ReceivePacket(*types.PacketManifest)
GetObservedConnectionsChan(int) chan bool
Connections() []ConnectionInterface
Stop()
}
type ConnectionOptions struct {
MaxBufferedPagesTotal int
MaxBufferedPagesPerConnection int
MaxRingPackets int
PageCache *pageCache
LogDir string
LogPackets bool
AttackLogger types.Logger
DetectHijack bool
DetectInjection bool
DetectCoalesceInjection bool
}
// Connection is used to track client and server flows for a given TCP connection.
// We implement a basic TCP finite state machine and track state in order to detect
// hanshake hijack and other TCP attacks such as segment veto and sloppy injection.
type Connection struct {
ConnectionOptions
attackDetected bool
packetCount uint64
skipHijackDetectionCount uint64
lastSeen time.Time
lastSeenMutex sync.Mutex
state uint8
clientState uint8
serverState uint8
clientFlow *types.TcpIpFlow
serverFlow *types.TcpIpFlow
closingFlow *types.TcpIpFlow
closingRST bool
closingFIN bool
closingSeq types.Sequence
clientNextSeq types.Sequence
serverNextSeq types.Sequence
hijackNextAck types.Sequence
firstSynAckSeq uint32
ClientStreamRing *types.Ring
ServerStreamRing *types.Ring
ClientCoalesce *OrderedCoalesce
ServerCoalesce *OrderedCoalesce
PacketLogger types.PacketLogger
}
func (c *Connection) GetClientFlow() *types.TcpIpFlow {
return c.clientFlow
}
func (c *Connection) SetPacketLogger(logger types.PacketLogger) {
c.PacketLogger = logger
}
// GetLastSeen returns the lastSeen timestamp after grabbing the lock
func (c *Connection) GetLastSeen() time.Time {
c.lastSeenMutex.Lock()
defer c.lastSeenMutex.Unlock()
return c.lastSeen
}
// updateLastSeen updates our lastSeen with the new timestamp after grabbing the lock
func (c *Connection) updateLastSeen(timestamp time.Time) {
c.lastSeenMutex.Lock()
defer c.lastSeenMutex.Unlock()
if c.lastSeen.Before(timestamp) {
c.lastSeen = timestamp
}
}
// Close can be used by the the connection or the dispatcher to close the connection
func (c *Connection) Close() {
log.Print("Close()")
if c.attackDetected == false {
if c.PacketLogger != nil {
log.Print("no attack detected. removing pcap logs")
c.PacketLogger.Remove()
}
} else {
if c.LogPackets {
log.Print("attack detected; archiving connection's pcap logs\n")
c.PacketLogger.Archive()
}
}
c.ClientCoalesce.Close()
c.ServerCoalesce.Close()
if c.LogPackets {
c.PacketLogger.Stop()
c.PacketLogger = nil // just in case the state machine receives another packet...
}
}
// detectHijack checks for duplicate SYN/ACK indicating handshake hijake
// and submits a report if an attack was observed
func (c *Connection) detectHijack(p *types.PacketManifest, flow *types.TcpIpFlow) {
// check for duplicate SYN/ACK indicating handshake hijake
if !flow.Equal(c.serverFlow) {
return
}
if p.TCP.ACK && p.TCP.SYN {
if types.Sequence(p.TCP.Ack).Difference(c.hijackNextAck) == 0 {
if p.TCP.Seq != c.firstSynAckSeq {
log.Print("handshake hijack detected\n")
c.AttackLogger.Log(&types.Event{
Time: time.Now(),
Type: "handshake-hijack",
PacketCount: c.packetCount,
Flow: *flow,
HijackSeq: p.TCP.Seq,
HijackAck: p.TCP.Ack})
c.attackDetected = true
} else {
log.Print("SYN/ACK retransmission\n")
}
}
}
}
func (c *Connection) detectInjection(p *types.PacketManifest) {
var ringPtr *types.Ring
if p.Flow.Equal(c.clientFlow) {
ringPtr = c.ServerStreamRing
} else {
ringPtr = c.ClientStreamRing
}
start := types.Sequence(p.TCP.Seq)
end := types.Sequence(p.TCP.Seq).Add(len(p.Payload))
// injection detection
events := checkForInjectionInRing(ringPtr, start, end, p.Payload)
if len(events) == 0 {
return
}
// log events if any
for i := 0; i < len(events); i++ {
if events[i] == nil {
panic("wtf got nil event")
} else {
if len(events[i].Type) == 0 {
events[i].Type = "segment veto or sloppy injection"
}
events[i].Base = types.Sequence(p.TCP.Seq)
events[i].Time = p.Timestamp
events[i].Flow = *p.Flow
events[i].Payload = p.Payload
events[i].PacketCount = c.packetCount
c.AttackLogger.Log(events[i])
c.attackDetected = true
log.Printf("injection detected in packet # %d\n", c.packetCount)
}
}
}
// stateUnknown gets called by our TCP finite state machine runtime
// and moves us into the TCP_CONNECTION_REQUEST state if we receive
// a SYN packet... otherwise TCP_DATA_TRANSFER state.
func (c *Connection) stateUnknown(p *types.PacketManifest) {
c.clientFlow = p.Flow
f := p.Flow.Reverse()
c.serverFlow = &f
if p.TCP.SYN && !p.TCP.ACK {
c.state = TCP_CONNECTION_REQUEST
// Note that TCP SYN and SYN/ACK packets may contain payload data if
// a TCP extension is used...
// If so then the sequence number needs to track this payload.
// For more information see: https://tools.ietf.org/id/draft-agl-tcpm-sadata-00.html
c.clientNextSeq = types.Sequence(p.TCP.Seq).Add(len(p.Payload) + 1)
c.hijackNextAck = c.clientNextSeq
} else {
// else process a connection after handshake
c.state = TCP_DATA_TRANSFER
// skip handshake hijack detection completely
c.skipHijackDetectionCount = 0
c.clientNextSeq = types.Sequence(p.TCP.Seq).Add(len(p.Payload) + 1)
if len(p.Payload) > 0 {
reassembly := types.Reassembly{
Seq: types.Sequence(p.TCP.Seq),
Bytes: []byte(p.Payload),
Seen: p.Timestamp,
}
c.ServerStreamRing.Reassembly = &reassembly
c.ServerStreamRing = c.ServerStreamRing.Next()
c.clientNextSeq = types.Sequence(p.TCP.Seq).Add(len(p.Payload))
}
if p.TCP.FIN || p.TCP.RST {
c.state = TCP_CLOSED
c.closingFlow = p.Flow
c.closingSeq = types.Sequence(p.TCP.Seq)
return
}
}
}
// stateConnectionRequest gets called by our TCP finite state machine runtime
// and moves us into the TCP_CONNECTION_ESTABLISHED state if we receive
// a SYN/ACK packet.
func (c *Connection) stateConnectionRequest(p *types.PacketManifest) {
if !p.Flow.Equal(c.serverFlow) {
log.Print("handshake anomaly")
return
}
if !(p.TCP.SYN && p.TCP.ACK) {
log.Print("handshake anomaly")
return
}
if c.clientNextSeq.Difference(types.Sequence(p.TCP.Ack)) != 0 {
log.Print("handshake anomaly")
return
}
c.state = TCP_CONNECTION_ESTABLISHED
c.serverNextSeq = types.Sequence(p.TCP.Seq).Add(len(p.Payload) + 1) // XXX see above comment about TCP extentions
c.firstSynAckSeq = p.TCP.Seq
}
// stateConnectionEstablished is called by our TCP FSM runtime and
// changes our state to TCP_DATA_TRANSFER if we receive a valid final
// handshake ACK packet.
func (c *Connection) stateConnectionEstablished(p *types.PacketManifest) {
if !c.attackDetected {
if c.DetectHijack {
c.detectHijack(p, p.Flow)
if c.attackDetected {
return
}
}
}
if !p.Flow.Equal(c.clientFlow) {
log.Print("handshake anomaly")
return
}
if !p.TCP.ACK || p.TCP.SYN {
log.Print("handshake anomaly")
return
}
if types.Sequence(p.TCP.Seq).Difference(c.clientNextSeq) != 0 {
log.Print("handshake anomaly")
return
}
if types.Sequence(p.TCP.Ack).Difference(c.serverNextSeq) != 0 {
log.Print("handshake anomaly")
return
}
c.state = TCP_DATA_TRANSFER
log.Printf("connected %s\n", c.clientFlow.String())
}
// stateDataTransfer is called by our TCP FSM and processes packets
// once we are in the TCP_DATA_TRANSFER state
func (c *Connection) stateDataTransfer(p *types.PacketManifest) {
var closerState, remoteState *uint8
var diff int
isEnd := false
if c.clientNextSeq == types.InvalidSequence && p.Flow.Equal(c.clientFlow) {
c.clientNextSeq = types.Sequence(p.TCP.Seq)
} else if c.serverNextSeq == types.InvalidSequence && p.Flow.Equal(c.serverFlow) {
c.serverNextSeq = types.Sequence(p.TCP.Seq)
}
if c.packetCount < c.skipHijackDetectionCount {
if c.DetectHijack {
c.detectHijack(p, p.Flow)
}
}
if p.Flow.Equal(c.clientFlow) {
diff = c.clientNextSeq.Difference(types.Sequence(p.TCP.Seq))
closerState = &c.clientState
remoteState = &c.serverState
} else if p.Flow.Equal(c.serverFlow) {
diff = c.serverNextSeq.Difference(types.Sequence(p.TCP.Seq))
closerState = &c.serverState
remoteState = &c.clientState
} else {
log.Printf("packet flow %s clientflow %s serverflow %s\n", p.Flow, c.clientFlow, c.serverFlow)
panic("wtf")
}
if diff == 0 { // contiguous
if len(p.Payload) > 0 {
reassembly := types.Reassembly{
Seq: types.Sequence(p.TCP.Seq),
Bytes: []byte(p.Payload),
Seen: p.Timestamp,
}
if p.Flow.Equal(c.clientFlow) {
c.ServerStreamRing.Reassembly = &reassembly
c.ServerStreamRing = c.ServerStreamRing.Next()
c.clientNextSeq = types.Sequence(p.TCP.Seq).Add(len(p.Payload))
prev := c.clientNextSeq
c.clientNextSeq, isEnd = c.ServerCoalesce.addContiguous(c.clientNextSeq)
if c.clientNextSeq != prev {
reassembly.IsCoalesceGap = true
}
if isEnd {
c.state = TCP_CLOSED
return
}
} else {
c.ClientStreamRing.Reassembly = &reassembly
c.ClientStreamRing = c.ClientStreamRing.Next()
c.serverNextSeq = types.Sequence(p.TCP.Seq).Add(len(p.Payload))
prev := c.serverNextSeq
c.serverNextSeq, isEnd = c.ClientCoalesce.addContiguous(c.serverNextSeq)
if c.serverNextSeq != prev {
reassembly.IsCoalesceGap = true
}
if isEnd {
c.state = TCP_CLOSED
return
}
}
}
if p.TCP.RST {
log.Print("got RST!\n")
c.closingRST = true
c.state = TCP_CLOSED
c.closingFlow = p.Flow
c.closingSeq = types.Sequence(p.TCP.Seq)
return
}
if p.TCP.FIN {
c.closingFIN = true
c.closingFlow = p.Flow
c.state = TCP_CONNECTION_CLOSING
*closerState = TCP_FIN_WAIT1
*remoteState = TCP_CLOSE_WAIT
return
}
} else if diff > 0 { // future-out-of-order packet case
if p.Flow.Equal(c.clientFlow) {
c.clientNextSeq, isEnd = c.ServerCoalesce.insert(p, c.clientNextSeq)
} else {
c.serverNextSeq, isEnd = c.ClientCoalesce.insert(p, c.serverNextSeq)
}
if isEnd {
c.state = TCP_CLOSED
c.closingFlow = p.Flow
c.closingSeq = types.Sequence(p.TCP.Seq)
}
}
}
// stateFinWait1 handles packets for the FIN-WAIT-1 state
//func (c *Connection) stateFinWait1(p *types.PacketManifest) {
func (c *Connection) stateFinWait1(p *types.PacketManifest, flow *types.TcpIpFlow, nextSeqPtr *types.Sequence, nextAckPtr *types.Sequence, statePtr, otherStatePtr *uint8) {
c.detectCensorInjection(p)
diff := nextSeqPtr.Difference(types.Sequence(p.TCP.Seq))
if diff > 0 {
// future out of order
log.Print("FIN-WAIT-1: ignoring out of order packet")
return
} else if diff == 0 {
if len(p.Payload) > 0 {
reassembly := types.Reassembly{
Seq: types.Sequence(p.TCP.Seq),
Bytes: []byte(p.Payload),
Seen: p.Timestamp,
}
if p.Flow.Equal(c.clientFlow) {
c.ServerStreamRing.Reassembly = &reassembly
c.ServerStreamRing = c.ServerStreamRing.Next()
c.clientNextSeq = types.Sequence(p.TCP.Seq).Add(len(p.Payload))
c.clientNextSeq, _ = c.ServerCoalesce.addContiguous(c.clientNextSeq)
} else {
c.ClientStreamRing.Reassembly = &reassembly
c.ClientStreamRing = c.ClientStreamRing.Next()
c.serverNextSeq = types.Sequence(p.TCP.Seq).Add(len(p.Payload))
c.serverNextSeq, _ = c.ClientCoalesce.addContiguous(c.serverNextSeq)
}
}
if p.TCP.ACK {
*nextAckPtr += 1
if p.TCP.FIN {
*statePtr = TCP_CLOSING
*otherStatePtr = TCP_LAST_ACK
*nextSeqPtr = types.Sequence(p.TCP.Seq).Add(len(p.Payload) + 1)
if types.Sequence(p.TCP.Ack).Difference(*nextAckPtr) != 0 {
log.Printf("FIN-WAIT-1: unexpected ACK: got %d expected %d TCP.Seq %d\n", p.TCP.Ack, *nextAckPtr, p.TCP.Seq)
c.closingFlow = p.Flow
c.closingSeq = types.Sequence(p.TCP.Seq)
return
}
} else {
*statePtr = TCP_FIN_WAIT2
*nextSeqPtr = types.Sequence(p.TCP.Seq).Add(len(p.Payload))
}
} else {
log.Print("FIN-WAIT-1: non-ACK packet received.\n")
c.closingFlow = p.Flow
c.closingSeq = types.Sequence(p.TCP.Seq)
return
}
}
}
// stateFinWait2 handles packets for the FIN-WAIT-2 state
func (c *Connection) stateFinWait2(p *types.PacketManifest, flow *types.TcpIpFlow, nextSeqPtr *types.Sequence, nextAckPtr *types.Sequence, statePtr *uint8) {
c.detectCensorInjection(p)
diff := nextSeqPtr.Difference(types.Sequence(p.TCP.Seq))
if diff > 0 {
// future out of order
log.Print("FIN-WAIT-2: out of order packet received.\n")
log.Printf("got TCP.Seq %d expected %d\n", p.TCP.Seq, *nextSeqPtr)
} else if diff == 0 {
// contiguous
if p.TCP.ACK && p.TCP.FIN {
*nextSeqPtr += 1
*statePtr = TCP_TIME_WAIT
}
}
}
// stateCloseWait represents the TCP FSM's CLOSE-WAIT state
func (c *Connection) stateCloseWait(p *types.PacketManifest) {
var nextSeqPtr *types.Sequence
if p.Flow.Equal(c.clientFlow) {
nextSeqPtr = &c.clientNextSeq
} else {
nextSeqPtr = &c.serverNextSeq
}
diff := types.Sequence(p.TCP.Seq).Difference(*nextSeqPtr)
// stream overlap case
if diff > 0 {
if len(p.Payload) == 0 {
c.detectCensorInjection(p)
}
}
}
// stateTimeWait represents the TCP FSM's CLOSE-WAIT state
func (c *Connection) stateTimeWait(p *types.PacketManifest) {
log.Print("TIME-WAIT: invalid protocol state\n")
c.closingFlow = p.Flow
c.closingSeq = types.Sequence(p.TCP.Seq)
}
// stateClosing represents the TCP FSM's CLOSING state
func (c *Connection) stateClosing(p *types.PacketManifest) {
log.Print("CLOSING: invalid protocol state\n")
}
// stateLastAck represents the TCP FSM's LAST-ACK state
func (c *Connection) stateLastAck(p *types.PacketManifest, flow *types.TcpIpFlow, nextSeqPtr *types.Sequence, nextAckPtr *types.Sequence, statePtr *uint8) {
if types.Sequence(p.TCP.Seq).Difference(*nextSeqPtr) == 0 {
if p.TCP.ACK && (!p.TCP.FIN && !p.TCP.SYN) {
if types.Sequence(p.TCP.Ack).Difference(*nextAckPtr) != 0 {
log.Printf("LAST-ACK: out of order ACK packet received. seq %d != nextAck %d\n", p.TCP.Ack, *nextAckPtr)
}
} else {
log.Print("LAST-ACK: protocol anamoly\n")
}
} else {
log.Print("LAST-ACK: out of order packet received\n")
log.Printf("LAST-ACK: out of order packet received; got %d expected %d\n", p.TCP.Seq, *nextSeqPtr)
}
c.state = TCP_CLOSED
}
func (c *Connection) detectCensorInjection(p *types.PacketManifest) {
var attackType string
if p.TCP.FIN || p.TCP.RST {
// ignore "closing" retransmissions
return
}
if len(p.Payload) == 0 {
return
}
if c.closingRST {
attackType = "censor-injection-RST_"
} else if c.closingFIN {
attackType = "censor-injection-FIN_"
} else {
attackType = "censor-injection-coalesce_"
}
if c.closingFlow != nil {
if p.Flow.Equal(c.closingFlow) && types.Sequence(p.TCP.Seq).Difference(c.closingSeq) == 0 {
attackType += "closing-sequence-overlap"
} else {
return
}
} else {
return
}
event := types.Event{
Type: attackType,
PacketCount: c.packetCount,
Time: time.Now(),
Flow: *p.Flow,
Start: types.Sequence(p.TCP.Seq),
}
c.AttackLogger.Log(&event)
c.attackDetected = true
}
func (c *Connection) stateClosed(p *types.PacketManifest) {
var nextSeqPtr *types.Sequence
if p.Flow.Equal(c.clientFlow) {
nextSeqPtr = &c.clientNextSeq
} else {
nextSeqPtr = &c.serverNextSeq
}
if *nextSeqPtr != types.InvalidSequence {
c.detectCensorInjection(p)
}
}
// stateConnectionClosing handles all the closing states until the closed state has been reached.
func (c *Connection) stateConnectionClosing(p *types.PacketManifest) {
var nextSeqPtr *types.Sequence
var nextAckPtr *types.Sequence
var statePtr, otherStatePtr *uint8
if c.clientFlow.Equal(p.Flow) {
statePtr = &c.clientState
otherStatePtr = &c.serverState
nextSeqPtr = &c.clientNextSeq
nextAckPtr = &c.serverNextSeq
} else {
statePtr = &c.serverState
otherStatePtr = &c.clientState
nextSeqPtr = &c.serverNextSeq
nextAckPtr = &c.clientNextSeq
}
if p.Flow.Equal(c.closingFlow) {
switch *statePtr {
case TCP_CLOSE_WAIT:
c.stateCloseWait(p)
case TCP_LAST_ACK:
c.stateLastAck(p, p.Flow, nextSeqPtr, nextAckPtr, statePtr)
}
} else {
switch *statePtr {
case TCP_FIN_WAIT1:
c.stateFinWait1(p, p.Flow, nextSeqPtr, nextAckPtr, statePtr, otherStatePtr)
case TCP_FIN_WAIT2:
c.stateFinWait2(p, p.Flow, nextSeqPtr, nextAckPtr, statePtr)
case TCP_TIME_WAIT:
c.stateTimeWait(p)
case TCP_CLOSING:
c.stateClosing(p)
}
}
}
// ReceivePacket implements a TCP finite state machine
// which is loosely based off of the simplified FSM in this paper:
// http://ants.iis.sinica.edu.tw/3bkmj9ltewxtsrrvnoknfdxrm3zfwrr/17/p520460.pdf
// The goal is to detect all manner of content injection.
func (c *Connection) ReceivePacket(p *types.PacketManifest) {
c.updateLastSeen(p.Timestamp)
if c.PacketLogger != nil {
c.PacketLogger.WritePacket(p.RawPacket, p.Timestamp)
}
c.packetCount += 1
//log.Printf("packetCount %d\n", c.packetCount)
if c.state != TCP_UNKNOWN {
// detect injection
var nextSeqPtr *types.Sequence
if c.clientFlow.Equal(p.Flow) {
nextSeqPtr = &c.clientNextSeq
} else {
nextSeqPtr = &c.serverNextSeq
}
diff := nextSeqPtr.Difference(types.Sequence(p.TCP.Seq))
if diff < 0 {
// overlap
if len(p.Payload) > 0 {
c.detectInjection(p)
}
}
}
// simplified TCP state machine
switch c.state {
case TCP_UNKNOWN:
c.stateUnknown(p)
case TCP_CONNECTION_REQUEST:
c.stateConnectionRequest(p)
case TCP_CONNECTION_ESTABLISHED:
c.stateConnectionEstablished(p)
case TCP_DATA_TRANSFER:
c.stateDataTransfer(p)
case TCP_CONNECTION_CLOSING:
c.stateConnectionClosing(p)
case TCP_CLOSED:
c.stateClosed(p)
}
}