diff --git a/.travis.yml b/.travis.yml index 524db85..26ea6a5 100755 --- a/.travis.yml +++ b/.travis.yml @@ -16,7 +16,7 @@ script: - python setup.py test - mkdir docs - export PYTHONPATH=`pwd` - - sphinx-quickstart -q -p scikit-datasets -a "David Diaz Vico" -v 0.1 -r 0.1.30 -l en --ext-autodoc --ext-viewcode --ext-githubpages --extensions sphinxcontrib.napoleon --no-makefile --no-batchfile docs + - sphinx-quickstart -q -p scikit-datasets -a "David Diaz Vico" -v 0.1 -r 0.1.31 -l en --ext-autodoc --ext-viewcode --ext-githubpages --extensions sphinxcontrib.napoleon --no-makefile --no-batchfile docs - sphinx-apidoc -o docs/_static/ skdatasets -F -a -l - travis-sphinx -v build -s docs -n after_success: diff --git a/README.md b/README.md index 372ba6b..dff242f 100755 --- a/README.md +++ b/README.md @@ -1,41 +1,42 @@ -# scikit-datasets -Scikit-learn-compatible datasets - -## Status -[![Build Status](https://travis-ci.com/daviddiazvico/scikit-datasets.svg?branch=master)](https://travis-ci.com/daviddiazvico/scikit-datasets) -[![Maintainability](https://api.codeclimate.com/v1/badges/a37c9ee152b41a0cb577/maintainability)](https://codeclimate.com/github/daviddiazvico/scikit-datasets/maintainability) -[![Test Coverage](https://api.codeclimate.com/v1/badges/a37c9ee152b41a0cb577/test_coverage)](https://codeclimate.com/github/daviddiazvico/scikit-datasets/test_coverage) - -## Installation -Available in [PyPI](https://pypi.python.org/pypi?:action=display&name=scikit-datasets) -``` -pip install scikit-datasets -``` - -## Documentation -Autogenerated and hosted in [GitHub Pages](https://daviddiazvico.github.io/scikit-datasets/) - -## Distribution -Run the following command from the project home to create the distribution -``` -python setup.py sdist bdist_wheel -``` -and upload the package to [testPyPI](https://testpypi.python.org/) -``` -twine upload --repository-url https://test.pypi.org/legacy/ dist/* -``` -or [PyPI](https://pypi.python.org/) -``` -twine upload dist/* -``` - -## Citation -If you find scikit-datasets useful, please cite it in your publications. You can use this [BibTeX](http://www.bibtex.org/) entry: -``` -@misc{scikit-datasets, - title={scikit-datasets}, - author={Diaz-Vico, David}, - year={2017}, - publisher={GitHub}, - howpublished={\url{https://github.com/daviddiazvico/scikit-datasets}}} +# scikit-datasets +Scikit-learn-compatible datasets + +## Status +[![Build Status](https://travis-ci.com/daviddiazvico/scikit-datasets.svg?branch=master)](https://travis-ci.com/daviddiazvico/scikit-datasets) +[![Maintainability](https://api.codeclimate.com/v1/badges/a37c9ee152b41a0cb577/maintainability)](https://codeclimate.com/github/daviddiazvico/scikit-datasets/maintainability) +[![Test Coverage](https://api.codeclimate.com/v1/badges/a37c9ee152b41a0cb577/test_coverage)](https://codeclimate.com/github/daviddiazvico/scikit-datasets/test_coverage) +[![Build Status](https://dev.azure.com/daviddiazvico0337/daviddiazvico/_apis/build/status/daviddiazvico.scikit-datasets?branchName=master)](https://dev.azure.com/daviddiazvico0337/daviddiazvico/_build/latest?definitionId=1&branchName=master) + +## Installation +Available in [PyPI](https://pypi.python.org/pypi?:action=display&name=scikit-datasets) +``` +pip install scikit-datasets +``` + +## Documentation +Autogenerated and hosted in [GitHub Pages](https://daviddiazvico.github.io/scikit-datasets/) + +## Distribution +Run the following command from the project home to create the distribution +``` +python setup.py sdist bdist_wheel +``` +and upload the package to [testPyPI](https://testpypi.python.org/) +``` +twine upload --repository-url https://test.pypi.org/legacy/ dist/* +``` +or [PyPI](https://pypi.python.org/) +``` +twine upload dist/* +``` + +## Citation +If you find scikit-datasets useful, please cite it in your publications. You can use this [BibTeX](http://www.bibtex.org/) entry: +``` +@misc{scikit-datasets, + title={scikit-datasets}, + author={Diaz-Vico, David}, + year={2017}, + publisher={GitHub}, + howpublished={\url{https://github.com/daviddiazvico/scikit-datasets}}} ``` \ No newline at end of file diff --git a/azure-pipelines.yml b/azure-pipelines.yml new file mode 100644 index 0000000..ebcef56 --- /dev/null +++ b/azure-pipelines.yml @@ -0,0 +1,31 @@ +# Python package +# Create and test a Python package on multiple Python versions. +# Add steps that analyze code, save the dist with the build record, publish to a PyPI-compatible index, and more: +# https://docs.microsoft.com/azure/devops/pipelines/languages/python + +trigger: +- master + +pool: + vmImage: 'ubuntu-latest' +strategy: + matrix: + Python36: + python.version: '3.6' + Python37: + python.version: '3.7' + +steps: +- task: UsePythonVersion@0 + inputs: + versionSpec: '$(python.version)' + displayName: 'Use Python $(python.version)' + +- script: | + python -m pip install --upgrade pip + displayName: 'Install dependencies' + +- script: | + pip install pytest-azurepipelines + python setup.py test + displayName: 'Test' diff --git a/setup.py b/setup.py index ce44d3a..6865ff6 100755 --- a/setup.py +++ b/setup.py @@ -9,30 +9,28 @@ setup(name='scikit-datasets', packages=find_packages(), - version='0.1.30', + version='0.1.31', description='Scikit-learn-compatible datasets', # long_description=open('README.md', 'r').read(), author='David Diaz Vico', author_email='david.diaz.vico@outlook.com', url='https://github.com/daviddiazvico/scikit-datasets', - download_url='https://github.com/daviddiazvico/scikit-datasets/archive/v0.1.30.tar.gz', + download_url='https://github.com/daviddiazvico/scikit-datasets/archive/v0.1.31.tar.gz', keywords=['scikit-learn'], classifiers=['Intended Audience :: Science/Research', 'Topic :: Scientific/Engineering', 'Programming Language :: Python', 'Programming Language :: Python :: 3', - 'Programming Language :: Python :: 3.6'], - install_requires=['scikit-learn'], + 'Programming Language :: Python :: 3.7'], + install_requires=['numpy', 'scipy', 'scikit-learn'], extras_require={'cran': ['rdata'], 'forex': ['forex_python'], 'keel': ['pandas'], 'keras': ['keras'], - 'utils.estimator': ['jsonpickle'], - 'utils.experiments': ['sacred'], - 'utils.scores': ['pandas', 'scipy', 'statsmodels'], - 'utils.validation': ['seaborn']}, + 'utils.estimator': ['jsonpickle==0.9.6'], + 'utils.experiments': ['sacred']}, setup_requires=['pytest-runner'], - tests_require=['coverage', 'forex_python', 'jsonpickle', 'keras', - 'pandas', 'pytest', 'pytest-cov', 'rdata', 'sacred', - 'scipy', 'seaborn', 'statsmodels', 'tensorflow'], + tests_require=['coverage', 'forex_python', 'jsonpickle==0.9.6', 'keras', + 'pandas', 'pymongo', 'pytest', 'pytest-cov', 'rdata', + 'sacred', 'tensorflow'], test_suite='tests') diff --git a/skdatasets/repositories/__init__.py b/skdatasets/repositories/__init__.py index 9fc3543..627c3fe 100644 --- a/skdatasets/repositories/__init__.py +++ b/skdatasets/repositories/__init__.py @@ -29,8 +29,8 @@ def fetch(repository, dataset, collection=None, **kwargs): - try: + if collection: data = repos[repository].fetch(collection, dataset, **kwargs) - except: + else: data = repos[repository].fetch(dataset, **kwargs) return data diff --git a/skdatasets/utils/experiment.py b/skdatasets/utils/experiment.py index b7b6e33..e89a181 100644 --- a/skdatasets/utils/experiment.py +++ b/skdatasets/utils/experiment.py @@ -4,11 +4,9 @@ """ import numpy as np -import os from sacred import Experiment, Ingredient from sklearn.model_selection import cross_validate, PredefinedSplit - -from skdatasets.utils.validation import scatter_plot, metaparameter_plot, history_plot +from tempfile import TemporaryFile def experiment(dataset, estimator): @@ -41,20 +39,17 @@ def experiment(dataset, estimator): experiment = Experiment(ingredients=(_dataset, _estimator)) @experiment.automain - def run(cross_validate=cross_validate, return_estimator=False): + def run(return_estimator=False, save_output=False): """Run the experiment. Run the experiment. Parameters ---------- - cross_validate : function, default=cross_validate - Function to evaluate metrics by cross-validation. Must receive the - estimator, X, y (migth be None) and cv (migth be None). Must return - a dictionary with the cross-validation score and maybe other info, - like a list of fitted estimators. return_estimator : boolean, default False Whether to return the estimator or estimators fitted. + save_output : boolean, default False + Whether to save the output as an artifact. """ data = dataset() @@ -62,17 +57,6 @@ def run(cross_validate=cross_validate, return_estimator=False): if a not in data: setattr(data, a, None) - def _explicit_folds(data): - """Prepare a dataset where the CV folds are explicit.""" - X = np.array([]).reshape((0, *data.inner_cv[0][0].shape[1:])) - y = np.array([]).reshape((0, *data.inner_cv[0][1].shape[1:])) - cv = [] - for i, (X_, y_, X_test_, y_test_) in enumerate(data.inner_cv): - X = np.concatenate((X, X_, X_test_)) - y = np.concatenate((y, y_, y_test_)) - cv = cv + [-1]*len(X_) + [i]*len(X_test_) - return X, y, cv - def _estimator(cv=None): """Create an estimator with or without hyperparameter search.""" try: @@ -81,46 +65,43 @@ def _estimator(cv=None): e = estimator() return e - def _plots(e, i, X, y): - """Create different descriptive plots.""" - # Metaparameter plots - image_files = metaparameter_plot(e, image_file=f'metaparameter_{i}.pdf') - for image_file in image_files: - experiment.add_artifact(image_file) - print("Removing " + image_file) - os.remove(image_file) - # Scatter plots - image_files = scatter_plot(X, y, e, image_file=f'scatter_{i}.pdf') - for image_file in image_files: - experiment.add_artifact(image_file) - print("Removing " + image_file) - os.remove(image_file) + def _output(e, X): + """Generate the outputs of an estimator.""" + outputs = dict() + for output in ('transform', 'predict'): + if hasattr(e, output): + outputs[output] = getattr(e, output)(X) + return outputs # Inner CV for metaparameter search - if hasattr(data.inner_cv, '__iter__'): - # Explicit CV folds - X, y, cv = _explicit_folds(data) + if hasattr(data.inner_cv, '__iter__'): # Explicit CV folds + X = np.array([]).reshape((0, *data.inner_cv[0][0].shape[1:])) + y = np.array([]).reshape((0, *data.inner_cv[0][1].shape[1:])) + cv = [] + for i, (X_, y_, X_test_, y_test_) in enumerate(data.inner_cv): + X = np.concatenate((X, X_, X_test_)) + y = np.concatenate((y, y_, y_test_)) + cv = cv + [-1]*len(X_) + [i]*len(X_test_) e = _estimator(cv=PredefinedSplit(cv)) e.fit(X, y=y) if hasattr(e, 'best_estimator_'): e.fit = e.best_estimator_.fit - else: - # Automatic/indexed CV folds + else: # Automatic/indexed CV folds e = _estimator(cv=data.inner_cv) # Outer CV/test partition for model assessment - if data.data_test is not None: - # Test partition + if data.data_test is not None: # Test partition e.fit(data.data, y=data.target) scores = {'test_score': [e.score(data.data_test, y=data.target_test)]} if return_estimator: scores['estimator'] = [e] - _plots(e, 0, data.data_test, data.target_test) - else: - # Outer CV - if hasattr(data.outer_cv, '__iter__'): - # Explicit CV folds + if save_output: + with TemporaryFile() as tmpfile: + np.save(tmpfile, _output(e, data.data_test)) + experiment.add_artifact(tmpfile, name='output.npy') + else: # Outer CV + if hasattr(data.outer_cv, '__iter__'): # Explicit CV folds scores = {'test_score': []} if return_estimator: scores['estimator'] = [] @@ -129,16 +110,15 @@ def _plots(e, i, X, y): scores['test_score'].append(e.score(X_test, y=y_test)) if return_estimator: scores['estimator'].append(e) - _plots(e, i, X_test, y_test) - else: - # Automatic/indexed CV folds + if save_output: + with TemporaryFile() as tmpfile: + np.save(tmpfile, _output(e, X_test)) + experiment.add_artifact(tmpfile, + name=f'output_{i}.npy') + else: # Automatic/indexed CV folds scores = cross_validate(e, data.data, y=data.target, cv=data.outer_cv, - return_estimator=True) - for i, e in enumerate(scores['estimator']): - _plots(e, i, data.data, data.target) - if not return_estimator: - scores.pop('estimator') + return_estimator=return_estimator) experiment.log_scalar('score_mean', np.nanmean(scores['test_score'])) experiment.log_scalar('score_std', np.nanstd(scores['test_score'])) experiment.info.update(scores) diff --git a/skdatasets/utils/experiments.ipynb b/skdatasets/utils/experiments.ipynb deleted file mode 100644 index e67211d..0000000 --- a/skdatasets/utils/experiments.ipynb +++ /dev/null @@ -1,272 +0,0 @@ -{ - "cells": [ - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "%matplotlib inline" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Experiments notebook" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "import json\n", - "import numpy as np\n", - "import os\n", - "import pandas as pd\n", - "import pickle\n", - "from sklearn.model_selection import cross_val_predict" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "from skdatasets import load\n", - "from skdatasets.utils.scores import hypotheses_table, scores_table" - "from skdatasets.utils.validation import classifier_scatter, metaparameter_plot" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "def parse_experiment_score(config, info=None):\n", - " repository = config['dataset']['repository']\n", - " dataset = config['dataset']['dataset']\n", - " predictor = config['estimator']['predictor']\n", - " score = np.nan\n", - " if info is not None:\n", - " score = info['score']['values'] if type(info['score']) == dict else info['score']\n", - " return repository, dataset, predictor, score" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "def describe_dataset(X, y=None):\n", - " n_patterns = len(X)\n", - " dimension = X.shape[1]\n", - " n_classes = class_ratios = None\n", - " if (y is not None) and (y.dtype.kind in ('b', 'u', 'i')):\n", - " counts = np.unique(y, return_counts=True)[1]\n", - " n_classes = len(counts)\n", - " class_ratios = np.max(counts) / np.min(counts)\n", - " return n_patterns, dimension, n_classes, class_ratios" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "def datasets_table(datasets):\n", - " table = pd.DataFrame(columns=('n. patterns', 'dimension', 'n. classes', 'class ratios'))\n", - " for repository, dataset, X, y in datasets:\n", - " table.at[repository + ':' + dataset] = describe_dataset(X, y=y)\n", - " return table.dropna(axis=1, how='all')" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "folder = '../.results'" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Scores, hypotheses and datasets" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "scores = pd.DataFrame()\n", - "stds = pd.DataFrame()\n", - "for dirpath, dirnames, filenames in os.walk(folder):\n", - " try:\n", - " config = json.load(open(os.path.join(dirpath, 'config.json')))\n", - " info = json.load(open(os.path.join(dirpath, 'info.json')))\n", - " repository, dataset, predictor, score = parse_experiment_score(config, info=info)\n", - " scores.at[repository + ':' + dataset, predictor] = np.nanmean(score)\n", - " stds.at[repository + ':' + dataset, predictor] = np.nanstd(score)\n", - " except:\n", - " pass" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "scrolled": true - }, - "outputs": [], - "source": [ - "scores_table(scores.index, scores.columns.values, scores.values, stds.values)\n", - "# TODO: scores_table(scores, stds)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "hypotheses_table_ = hypotheses_table(scores.values, scores.columns.values, multitest='friedmanchisquare')\n", - "# TODO: hypotheses_table(scores, multitest='friedmanchisquare')" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "hypotheses_table_[0]\n", - "# TODO: all in one table" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "hypotheses_table_[1]\n", - "# TODO: all in one table" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "datasets = [row.split(':') for row in scores.index]\n", - "datasets = [(r, d, *load(r, d, return_X_y=True)[:2]) for r, d in datasets]" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "datasets_table(datasets)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Meta-parameter search and prediction scatter" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "experiment = '1'\n", - "param = 'classifier__C'" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "config = json.load(open(os.path.join(folder, experiment, 'config.json')))\n", - "repository, dataset, predictor, _ = parse_experiment_score(config)\n", - "info = json.load(open(os.path.join(folder, experiment, 'info.json')))" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "estimator = pickle.load(open(os.path.join(folder, experiment, 'estimator.pkl'), 'rb'))\n", - "metaparameter_plot(estimator, param, '/tmp/' + repository + '-' + dataset + '-' + predictor + '-' + param + '.png')\n", - "# TODO: metaparameter_plot(info, param)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "estimator = pickle.load(open(os.path.join(folder, experiment, 'estimator.pkl'), 'rb'))\n", - "X, y, X_test, _, _, outer_cv = load(repository, dataset, return_X_y=True)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "if X_test is not None:\n", - " classifier_scatter(X_test, estimator.predict(X_test), '/tmp/' + repository + '-' + dataset + '-' + estimator + '_scatter.png')\n", - "# TODO: classifier_scatter(X_test, estimator.predict(X_test))\n", - "else:\n", - " preds = cross_val_predict(estimator, X, y=y)\n", - " classifier_scatter(X, cross_val_predict(estimator, X, y=y, cv=outer_cv), '/tmp/' + repository + '-' + dataset + '-' + estimator + '_scatter.png')\n", - "# TODO: classifier_scatter(X, cross_val_predict(estimator, X, y=y, cv=outer_cv))" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python [conda env:experiments]", - "language": "python", - "name": "conda-env-experiments-py" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.6.6" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/skdatasets/utils/scores.ipynb b/skdatasets/utils/scores.ipynb new file mode 100644 index 0000000..19989a3 --- /dev/null +++ b/skdatasets/utils/scores.ipynb @@ -0,0 +1,195 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import itertools as it\n", + "import numpy as np\n", + "import pandas as pd\n", + "from scipy.stats import kruskal, friedmanchisquare, mannwhitneyu, rankdata, wilcoxon\n", + "from statsmodels.sandbox.stats.multicomp import multipletests\n", + "\n", + "\n", + "def scores_table(datasets, estimators, scores, stds=None,\n", + " greater_is_better=True, method='average'):\n", + " \"\"\" Scores table.\n", + "\n", + " Prints a table where each row represents a dataset and each column\n", + " represents an estimator.\n", + "\n", + " Parameters\n", + " ----------\n", + " datasets: array-like\n", + " List of dataset names.\n", + " estimators: array-like\n", + " List of estimator names.\n", + " scores: array-like\n", + " Matrix of scores where each column represents a model.\n", + " stds: array_like, default=None\n", + " Matrix of standard deviations where each column represents a\n", + " model.\n", + " greater_is_better: boolean, default=True\n", + " Whether a greater score is better (score) or worse\n", + " (loss).\n", + " method: {'average', 'min', 'max', 'dense', 'ordinal'}, default='average'\n", + " Method used to solve ties.\n", + "\n", + " Returns\n", + " -------\n", + " table: array-like\n", + " Table of mean and standard deviation of each estimator-dataset\n", + " pair. A ranking of estimators is also generated.\n", + " \"\"\"\n", + " ranks = np.asarray([rankdata(-m, method=method) if greater_is_better else rankdata(m, method=method) for m in scores])\n", + " table = pd.DataFrame(data=scores, index=datasets, columns=estimators)\n", + " for i, d in enumerate(datasets):\n", + " for j, e in enumerate(estimators):\n", + " table.loc[d, e] = '{0:.2f}'.format(scores[i, j])\n", + " if stds is not None:\n", + " table.loc[d, e] += ' ±{0:.2f}'.format(stds[i, j])\n", + " table.loc[d, e] += ' ({0:.1f})'.format(ranks[i, j])\n", + " table.loc['rank mean'] = np.around(np.mean(ranks, axis=0), decimals=4)\n", + " return table\n", + "\n", + "\n", + "def hypotheses_table(samples, models, alpha=0.05, multitest=None,\n", + " test='wilcoxon', correction=None, multitest_args=dict(),\n", + " test_args=dict()):\n", + " \"\"\" Hypotheses table.\n", + "\n", + " Prints a hypothesis table with a selected test and correction.\n", + "\n", + " Parameters\n", + " ----------\n", + " samples: array-like\n", + " Matrix of samples where each column represent a model.\n", + " models: array-like\n", + " Model names.\n", + " alpha: float in [0, 1], default=0.05\n", + " Significance level.\n", + " multitest: {'kruskal', 'friedmanchisquare'}\n", + " default=None\n", + " Ranking multitest used.\n", + " test: {'mannwhitneyu', 'wilcoxon'},\n", + " default='wilcoxon'\n", + " Ranking test used.\n", + " correction: {'bonferroni', 'sidak', 'holm-sidak', 'holm',\n", + " 'simes-hochberg', 'hommel', 'fdr_bh', 'fdr_by', 'fdr_tsbh',\n", + " 'fdr_tsbky'},\n", + " default=None\n", + " Method used to adjust the p-values.\n", + " multitest_args: dict\n", + " Optional ranking test arguments.\n", + " test_args: dict\n", + " Optional ranking test arguments.\n", + "\n", + " Returns\n", + " -------\n", + " multitest_table: array-like\n", + " Table of p-value and rejection/non-rejection for the\n", + " multitest hypothesis.\n", + " test_table: array-like\n", + " Table of p-values and rejection/non-rejection for each test\n", + " hypothesis.\n", + " \"\"\"\n", + " versus = list(it.combinations(range(len(models)), 2))\n", + " comparisons = [models[vs[0]] + \" vs \" + models[vs[1]] for vs in versus]\n", + " multitests = {'kruskal': kruskal, 'friedmanchisquare': friedmanchisquare}\n", + " tests = {'mannwhitneyu': mannwhitneyu, 'wilcoxon': wilcoxon}\n", + " multitest_table = None\n", + " if multitest is not None:\n", + " multitest_table = pd.DataFrame(index=[multitest], columns=['p-value',\n", + " 'Hypothesis'])\n", + " statistic, pvalue = multitests[multitest](*samples, **multitest_args)\n", + " reject = 'Rejected' if pvalue <= alpha else 'Not rejected'\n", + " multitest_table.loc[multitest] = ['{0:.2f}'.format(pvalue), reject]\n", + " if pvalue > alpha:\n", + " return multitest_table, None\n", + " pvalues = [tests[test](samples[:, vs[0]], samples[:, vs[1]], **test_args)[1] for vs in versus]\n", + " if correction is not None:\n", + " reject, pvalues, alphac_sidak, alphac_bonf = multipletests(pvalues,\n", + " alpha,\n", + " method=correction)\n", + " else:\n", + " reject = ['Rejected' if pvalue <= alpha else 'Not rejected' for pvalue in pvalues]\n", + " test_table = pd.DataFrame(index=comparisons, columns=['p-value',\n", + " 'Hypothesis'])\n", + " for i, d in enumerate(comparisons):\n", + " test_table.loc[d] = ['{0:.2f}'.format(pvalues[i]), reject[i]]\n", + " return multitest_table, test_table\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "\n", + "from skdatasets.utils._scores import scores_table, hypotheses_table\n", + "\n", + "\n", + "datasets = ['a4a', 'a8a', 'combined', 'dna', 'ijcnn1', 'letter', 'pendigits',\n", + " 'satimage', 'shuttle', 'usps', 'w7a', 'w8a']\n", + "estimators = ['LogisticRegression', 'MLPClassifier0', 'MLPClassifier1',\n", + " 'MLPClassifier2', 'MLPClassifier3', 'MLPClassifier4',\n", + " 'MLPClassifier5']\n", + "scores = np.asarray(((89.79, 89.78, 89.76, 89.88, 89.85, 89.91, 89.93),\n", + " (90.73, 90.73, 90.73, 90.85, 90.83, 90.81, 90.80),\n", + " (92.36, 92.31, 94.58, 94.82, 94.84, 94.92, 94.89),\n", + " (99.28, 99.27, 99.28, 99.26, 99.27, 99.25, 99.25),\n", + " (91.34, 91.34, 99.29, 99.33, 99.34, 99.53, 99.54),\n", + " (98.07, 98.04, 99.94, 99.95, 99.96, 99.96, 99.95),\n", + " (99.17, 99.08, 99.87, 99.87, 99.88, 99.90, 99.89),\n", + " (96.67, 96.28, 98.84, 98.87, 98.90, 98.87, 98.92),\n", + " (95.85, 92.83, 99.88, 99.93, 99.96, 99.98, 99.99),\n", + " (99.12, 99.11, 99.65, 99.58, 99.58, 99.65, 99.60),\n", + " (95.93, 95.40, 94.58, 96.31, 96.34, 96.58, 96.50),\n", + " (95.80, 95.99, 95.35, 96.20, 96.22, 96.36, 96.71)))\n", + "\n", + "\n", + "def test_scores_table():\n", + " \"\"\"Tests scores table.\"\"\"\n", + " scores_table(datasets, estimators, scores)\n", + " scores_table(datasets, estimators, scores, stds=scores/10.0)\n", + "\n", + "\n", + "def test_hypotheses_table():\n", + " \"\"\"Tests hypotheses table.\"\"\"\n", + " for multitest in ('kruskal', 'friedmanchisquare', None):\n", + " for test in ('mannwhitneyu', 'wilcoxon'):\n", + " hypotheses_table(scores, estimators, multitest=multitest, test=test)\n", + " for correction in ('bonferroni', 'sidak', 'holm-sidak', 'holm',\n", + " 'simes-hochberg', 'hommel', 'fdr_bh', 'fdr_by',\n", + " 'fdr_tsbh', 'fdr_tsbky'):\n", + " hypotheses_table(scores, estimators, multitest=multitest,\n", + " test=test, correction=correction)\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.4" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/skdatasets/utils/scores.py b/skdatasets/utils/scores.py deleted file mode 100644 index b8613fb..0000000 --- a/skdatasets/utils/scores.py +++ /dev/null @@ -1,121 +0,0 @@ -""" -Scikit-learn-compatible visualizations for scores and hypothesis testing. - -@author: David Diaz Vico -@license: MIT -""" - -import itertools as it -import numpy as np -import pandas as pd -from scipy.stats import kruskal, friedmanchisquare, mannwhitneyu, rankdata, wilcoxon -from statsmodels.sandbox.stats.multicomp import multipletests - - -def scores_table(datasets, estimators, scores, stds=None, - greater_is_better=True, method='average'): - """ Scores table. - - Prints a table where each row represents a dataset and each column - represents an estimator. - - Parameters - ---------- - datasets: array-like - List of dataset names. - estimators: array-like - List of estimator names. - scores: array-like - Matrix of scores where each column represents a model. - stds: array_like, default=None - Matrix of standard deviations where each column represents a - model. - greater_is_better: boolean, default=True - Whether a greater score is better (score) or worse - (loss). - method: {'average', 'min', 'max', 'dense', 'ordinal'}, default='average' - Method used to solve ties. - - Returns - ------- - table: array-like - Table of mean and standard deviation of each estimator-dataset - pair. A ranking of estimators is also generated. - """ - ranks = np.asarray([rankdata(-m, method=method) if greater_is_better else rankdata(m, method=method) for m in scores]) - table = pd.DataFrame(data=scores, index=datasets, columns=estimators) - for i, d in enumerate(datasets): - for j, e in enumerate(estimators): - table.loc[d, e] = '{0:.2f}'.format(scores[i, j]) - if stds is not None: - table.loc[d, e] += ' ±{0:.2f}'.format(stds[i, j]) - table.loc[d, e] += ' ({0:.1f})'.format(ranks[i, j]) - table.loc['rank mean'] = np.around(np.mean(ranks, axis=0), decimals=4) - return table - - -def hypotheses_table(samples, models, alpha=0.05, multitest=None, - test='wilcoxon', correction=None, multitest_args=dict(), - test_args=dict()): - """ Hypotheses table. - - Prints a hypothesis table with a selected test and correction. - - Parameters - ---------- - samples: array-like - Matrix of samples where each column represent a model. - models: array-like - Model names. - alpha: float in [0, 1], default=0.05 - Significance level. - multitest: {'kruskal', 'friedmanchisquare'} - default=None - Ranking multitest used. - test: {'mannwhitneyu', 'wilcoxon'}, - default='wilcoxon' - Ranking test used. - correction: {'bonferroni', 'sidak', 'holm-sidak', 'holm', - 'simes-hochberg', 'hommel', 'fdr_bh', 'fdr_by', 'fdr_tsbh', - 'fdr_tsbky'}, - default=None - Method used to adjust the p-values. - multitest_args: dict - Optional ranking test arguments. - test_args: dict - Optional ranking test arguments. - - Returns - ------- - multitest_table: array-like - Table of p-value and rejection/non-rejection for the - multitest hypothesis. - test_table: array-like - Table of p-values and rejection/non-rejection for each test - hypothesis. - """ - versus = list(it.combinations(range(len(models)), 2)) - comparisons = [models[vs[0]] + " vs " + models[vs[1]] for vs in versus] - multitests = {'kruskal': kruskal, 'friedmanchisquare': friedmanchisquare} - tests = {'mannwhitneyu': mannwhitneyu, 'wilcoxon': wilcoxon} - multitest_table = None - if multitest is not None: - multitest_table = pd.DataFrame(index=[multitest], columns=['p-value', - 'Hypothesis']) - statistic, pvalue = multitests[multitest](*samples, **multitest_args) - reject = 'Rejected' if pvalue <= alpha else 'Not rejected' - multitest_table.loc[multitest] = ['{0:.2f}'.format(pvalue), reject] - if pvalue > alpha: - return multitest_table, None - pvalues = [tests[test](samples[:, vs[0]], samples[:, vs[1]], **test_args)[1] for vs in versus] - if correction is not None: - reject, pvalues, alphac_sidak, alphac_bonf = multipletests(pvalues, - alpha, - method=correction) - else: - reject = ['Rejected' if pvalue <= alpha else 'Not rejected' for pvalue in pvalues] - test_table = pd.DataFrame(index=comparisons, columns=['p-value', - 'Hypothesis']) - for i, d in enumerate(comparisons): - test_table.loc[d] = ['{0:.2f}'.format(pvalues[i]), reject[i]] - return multitest_table, test_table diff --git a/skdatasets/utils/validation.ipynb b/skdatasets/utils/validation.ipynb new file mode 100644 index 0000000..db00883 --- /dev/null +++ b/skdatasets/utils/validation.ipynb @@ -0,0 +1,276 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "import pandas as pd\n", + "import seaborn as sns\n", + "from sklearn.utils.multiclass import type_of_target\n", + "\n", + "\n", + "sns.set(style=\"white\", palette=\"muted\", color_codes=True)\n", + "\n", + "\n", + "def scatter_plot(X, y, estimator, image_file='scatter.pdf', max_features=10,\n", + " max_data=200, **kwargs):\n", + " \"\"\" Scatter plot.\n", + "\n", + " Scatter plot of the transformations or/and predictions of the estimator.\n", + "\n", + " Parameters\n", + " ----------\n", + " X : array-like, shape (n_samples, features_shape)\n", + " Input data.\n", + " y : numpy array of shape [n_samples]\n", + " Target values.\n", + " estimator : estimator\n", + " Fitted sklearn Transformer/Predictor object.\n", + " image_file: string, default=...\n", + " ...\n", + " max_features : integer, default=10\n", + " Maximum number of features to use in the plot\n", + " max_data : integer, default=200\n", + " Maximum number of data to use in the plot\n", + " **kwargs : optional savefig named args\n", + "\n", + " Returns\n", + " -------\n", + " List of image filenames.\n", + " \"\"\"\n", + " image_files = list()\n", + " max_data = min(X.shape[0], max_data)\n", + " max_features = min(X.shape[1], max_features)\n", + " target_type = type_of_target(y)\n", + " X = X[:max_data]\n", + " y = y[:max_data]\n", + " if hasattr(estimator, 'transform'):\n", + " # Transformer\n", + " plt.figure()\n", + " transfs = estimator.transform(X)\n", + " transfs = transfs[:max_data, :max_features]\n", + " if target_type in ('binary', 'multiclass'):\n", + " # Classification/clustering\n", + " names = list(range(transfs.shape[1]))\n", + " names.append('class')\n", + " data = pd.DataFrame(data=np.append(transfs,\n", + " np.reshape(y, (len(y), 1)),\n", + " axis=1),\n", + " columns=names)\n", + " sns.set()\n", + " sns.pairplot(data, hue='class', x_vars=names[:-1],\n", + " y_vars=names[:-1])\n", + " elif target_type == 'continuous':\n", + " # Regression\n", + " names = list(range(transfs.shape[1]))\n", + " names.append('y')\n", + " data = pd.DataFrame(data=np.append(transfs,\n", + " np.reshape(y, (-1, 1)),\n", + " axis=1),\n", + " columns=names)\n", + " sns.set()\n", + " sns.pairplot(data, hue='y', x_vars=names[:-1],\n", + " y_vars=names[:-1])\n", + " pass\n", + " transformer_image_file = 'transformer_' + image_file\n", + " plt.savefig(transformer_image_file, **kwargs)\n", + " image_files.append(transformer_image_file)\n", + " if hasattr(estimator, 'predict'):\n", + " # Predictor\n", + " plt.figure()\n", + " preds = estimator.predict(X)\n", + " try:\n", + " X = X[:, :max_features]\n", + " except:\n", + " X = X\n", + " try:\n", + " X = X.A\n", + " except:\n", + " X = X\n", + " preds = preds[:max_data]\n", + " if target_type in ('binary', 'multiclass'):\n", + " # Classification/clustering\n", + " names = list(range(X.shape[1]))\n", + " names.append('class')\n", + " diffs = y.flatten()\n", + " diffs[y.flatten() != preds.flatten()] = -1\n", + " data = pd.DataFrame(data=np.hstack((X, np.reshape(diffs, (-1, 1)))),\n", + " columns=names)\n", + " sns.set()\n", + " sns.pairplot(data, hue='class', x_vars=names[:-1],\n", + " y_vars=names[:-1])\n", + " elif target_type == 'continuous':\n", + " # Regression\n", + " data = pd.DataFrame(data=np.hstack((np.reshape(y, (-1, 1)),\n", + " np.reshape(preds, (-1, 1)),\n", + " np.reshape(y - preds, (-1, 1)))),\n", + " columns=('y', 'preds', 'error'))\n", + " sns.set()\n", + " sns.scatterplot(x='y', y='preds', hue='error', data=data)\n", + " predictor_image_file = 'predictor_' + image_file\n", + " plt.savefig(predictor_image_file, **kwargs)\n", + " image_files.append(predictor_image_file)\n", + " return image_files\n", + "\n", + "\n", + "def metaparameter_plot(estimator, image_file='metaparameter.pdf', **kwargs):\n", + " \"\"\" Metaparameter plot.\n", + "\n", + " Train and test metric plotted along a meta-parameter search space.\n", + "\n", + " Parameters\n", + " ----------\n", + " estimator : estimator\n", + " Fitted sklearn SearchCV object.\n", + " image_file: string, default=...\n", + " ...\n", + " **kwargs : optional savefig named args\n", + "\n", + " Returns\n", + " -------\n", + " List of image filenames.\n", + " \"\"\"\n", + " image_files = list()\n", + " if hasattr(estimator, 'cv_results_'):\n", + " for k, v in estimator.cv_results_.items():\n", + " if k[:6] == 'param_':\n", + " try:\n", + " param_range = v.data.astype('float32')\n", + " except:\n", + " continue\n", + " test_mean = estimator.cv_results_['mean_test_score']\n", + " test_std = estimator.cv_results_['std_test_score']\n", + " try:\n", + " train_mean = estimator.cv_results_['mean_train_score']\n", + " train_std = estimator.cv_results_['std_train_score']\n", + " except:\n", + " pass\n", + " plt.figure()\n", + " plt.autoscale(enable=True, axis='x')\n", + " plt.xlabel(k)\n", + " plt.ylabel('score')\n", + " plt.plot(param_range, test_mean, 'o', label='Test', color='g')\n", + " plt.fill_between(param_range, test_mean - test_std,\n", + " test_mean + test_std, alpha=0.2, color='g')\n", + " plt.plot(param_range[estimator.best_index_],\n", + " test_mean[estimator.best_index_], 'o', label='Best',\n", + " color='r')\n", + " try:\n", + " plt.plot(param_range, train_mean, 'o', label='Train',\n", + " color='b')\n", + " plt.fill_between(param_range, train_mean - train_std,\n", + " train_mean + train_std, alpha=0.2,\n", + " color='b')\n", + " plt.plot(param_range[estimator.best_index_],\n", + " train_mean[estimator.best_index_], 'o', color='r')\n", + " except:\n", + " pass\n", + " plt.axvline(x=param_range[estimator.best_index_], color='r')\n", + " plt.legend(loc='best')\n", + " image_file = k + '_' + image_file\n", + " plt.savefig(image_file, **kwargs)\n", + " image_files.append(image_file)\n", + " return image_files\n", + "\n", + "\n", + "def history_plot(history, image_file='history.pdf', **kwargs):\n", + " \"\"\" History plot.\n", + "\n", + " Loss plotted for each training epoch.\n", + "\n", + " Parameters\n", + " ----------\n", + " history : history object\n", + " Keras-like history object returned from fit.\n", + " image_file: string, default=...\n", + " ...\n", + " **kwargs : optional savefig named args\n", + "\n", + " Returns\n", + " -------\n", + " None.\n", + " \"\"\"\n", + " image_file = None\n", + " plt.figure()\n", + " plt.xlabel('Epoch')\n", + " plt.ylabel('Loss')\n", + " for k, v in history.history.items():\n", + " plt.plot(v, label=k)\n", + " plt.legend(loc='best')\n", + " plt.savefig(image_file, **kwargs)\n", + " return image_file\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import matplotlib.pyplot as plt\n", + "plt.switch_backend('agg')\n", + "from sklearn.datasets import load_boston, load_iris\n", + "from sklearn.decomposition import PCA\n", + "from sklearn.discriminant_analysis import LinearDiscriminantAnalysis\n", + "from sklearn.dummy import DummyRegressor\n", + "from sklearn.model_selection import GridSearchCV\n", + "\n", + "from skdatasets.utils._validation import scatter_plot, metaparameter_plot\n", + "\n", + "\n", + "def test_scatter_plot():\n", + " \"\"\"Tests scatter plot.\"\"\"\n", + " X, y = load_boston(return_X_y=True)\n", + " estimator = PCA(n_components=10)\n", + " estimator.fit(X, y)\n", + " image_files = scatter_plot(X, y, estimator)\n", + " assert len(image_files) == 1\n", + " estimator = DummyRegressor()\n", + " estimator.fit(X, y)\n", + " image_files = scatter_plot(X, y, estimator)\n", + " assert len(image_files) == 1\n", + " X, y = load_iris(return_X_y=True)\n", + " estimator = LinearDiscriminantAnalysis()\n", + " estimator.fit(X, y)\n", + " image_files = scatter_plot(X, y, estimator)\n", + " assert len(image_files) == 2\n", + "\n", + "\n", + "def test_metaparameter_plot():\n", + " \"\"\"Tests metaparameter plot.\"\"\"\n", + " X, y = load_boston(return_X_y=True)\n", + " estimator = GridSearchCV(DummyRegressor(),\n", + " {'strategy': ['mean', 'median', 'constant'],\n", + " 'constant': [1.0, 2.0, 3.0]})\n", + " estimator.fit(X, y)\n", + " image_files = metaparameter_plot(estimator)\n", + " assert len(image_files) == 1\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.4" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/skdatasets/utils/validation.py b/skdatasets/utils/validation.py deleted file mode 100644 index 307c8cf..0000000 --- a/skdatasets/utils/validation.py +++ /dev/null @@ -1,204 +0,0 @@ -""" -Scikit-learn-compatible visualizations for model validation. - -@author: David Diaz Vico -@license: MIT -""" - -import matplotlib.pyplot as plt -import numpy as np -import pandas as pd -import seaborn as sns -from sklearn.utils.multiclass import type_of_target - - -sns.set(style="white", palette="muted", color_codes=True) - - -def scatter_plot(X, y, estimator, image_file='scatter.pdf', max_features=10, - max_data=200, **kwargs): - """ Scatter plot. - - Scatter plot of the transformations or/and predictions of the estimator. - - Parameters - ---------- - X : array-like, shape (n_samples, features_shape) - Input data. - y : numpy array of shape [n_samples] - Target values. - estimator : estimator - Fitted sklearn Transformer/Predictor object. - image_file: string, default=... - ... - max_features : integer, default=10 - Maximum number of features to use in the plot - max_data : integer, default=200 - Maximum number of data to use in the plot - **kwargs : optional savefig named args - - Returns - ------- - List of image filenames. - """ - image_files = list() - max_data = min(X.shape[0], max_data) - max_features = min(X.shape[1], max_features) - target_type = type_of_target(y) - X = X[:max_data] - y = y[:max_data] - if hasattr(estimator, 'transform'): - # Transformer - plt.figure() - transfs = estimator.transform(X) - transfs = transfs[:max_data, :max_features] - if target_type in ('binary', 'multiclass'): - # Classification/clustering - names = list(range(transfs.shape[1])) - names.append('class') - data = pd.DataFrame(data=np.append(transfs, - np.reshape(y, (len(y), 1)), - axis=1), - columns=names) - sns.set() - sns.pairplot(data, hue='class', x_vars=names[:-1], - y_vars=names[:-1]) - elif target_type == 'continuous': - # Regression - names = list(range(transfs.shape[1])) - names.append('y') - data = pd.DataFrame(data=np.append(transfs, - np.reshape(y, (-1, 1)), - axis=1), - columns=names) - sns.set() - sns.pairplot(data, hue='y', x_vars=names[:-1], - y_vars=names[:-1]) - pass - transformer_image_file = 'transformer_' + image_file - plt.savefig(transformer_image_file, **kwargs) - image_files.append(transformer_image_file) - if hasattr(estimator, 'predict'): - # Predictor - plt.figure() - preds = estimator.predict(X) - try: - X = X[:, :max_features] - except: - X = X - try: - X = X.A - except: - X = X - preds = preds[:max_data] - if target_type in ('binary', 'multiclass'): - # Classification/clustering - names = list(range(X.shape[1])) - names.append('class') - diffs = y.flatten() - diffs[y.flatten() != preds.flatten()] = -1 - data = pd.DataFrame(data=np.hstack((X, np.reshape(diffs, (-1, 1)))), - columns=names) - sns.set() - sns.pairplot(data, hue='class', x_vars=names[:-1], - y_vars=names[:-1]) - elif target_type == 'continuous': - # Regression - data = pd.DataFrame(data=np.hstack((np.reshape(y, (-1, 1)), - np.reshape(preds, (-1, 1)), - np.reshape(y - preds, (-1, 1)))), - columns=('y', 'preds', 'error')) - sns.set() - sns.scatterplot(x='y', y='preds', hue='error', data=data) - predictor_image_file = 'predictor_' + image_file - plt.savefig(predictor_image_file, **kwargs) - image_files.append(predictor_image_file) - return image_files - - -def metaparameter_plot(estimator, image_file='metaparameter.pdf', **kwargs): - """ Metaparameter plot. - - Train and test metric plotted along a meta-parameter search space. - - Parameters - ---------- - estimator : estimator - Fitted sklearn SearchCV object. - image_file: string, default=... - ... - **kwargs : optional savefig named args - - Returns - ------- - List of image filenames. - """ - image_files = list() - if hasattr(estimator, 'cv_results_'): - for k, v in estimator.cv_results_.items(): - if k[:6] == 'param_': - try: - param_range = v.data.astype('float32') - except: - continue - test_mean = estimator.cv_results_['mean_test_score'] - test_std = estimator.cv_results_['std_test_score'] - try: - train_mean = estimator.cv_results_['mean_train_score'] - train_std = estimator.cv_results_['std_train_score'] - except: - pass - plt.figure() - plt.autoscale(enable=True, axis='x') - plt.xlabel(k) - plt.ylabel('score') - plt.plot(param_range, test_mean, 'o', label='Test', color='g') - plt.fill_between(param_range, test_mean - test_std, - test_mean + test_std, alpha=0.2, color='g') - plt.plot(param_range[estimator.best_index_], - test_mean[estimator.best_index_], 'o', label='Best', - color='r') - try: - plt.plot(param_range, train_mean, 'o', label='Train', - color='b') - plt.fill_between(param_range, train_mean - train_std, - train_mean + train_std, alpha=0.2, - color='b') - plt.plot(param_range[estimator.best_index_], - train_mean[estimator.best_index_], 'o', color='r') - except: - pass - plt.axvline(x=param_range[estimator.best_index_], color='r') - plt.legend(loc='best') - image_file = k + '_' + image_file - plt.savefig(image_file, **kwargs) - image_files.append(image_file) - return image_files - - -def history_plot(history, image_file='history.pdf', **kwargs): - """ History plot. - - Loss plotted for each training epoch. - - Parameters - ---------- - history : history object - Keras-like history object returned from fit. - image_file: string, default=... - ... - **kwargs : optional savefig named args - - Returns - ------- - None. - """ - image_file = None - plt.figure() - plt.xlabel('Epoch') - plt.ylabel('Loss') - for k, v in history.history.items(): - plt.plot(v, label=k) - plt.legend(loc='best') - plt.savefig(image_file, **kwargs) - return image_file diff --git a/tests/utils/MLPClassifier.json b/tests/utils/MLPClassifier.json index 6c8e2c8..c2f191a 100755 --- a/tests/utils/MLPClassifier.json +++ b/tests/utils/MLPClassifier.json @@ -21,7 +21,7 @@ { "py/object": "sklearn.neural_network.MLPClassifier", "py/state": { - "hidden_layer_sizes": [100], + "hidden_layer_sizes": [10], "activation": "relu", "solver": "adam", "alpha": 0.0001, @@ -29,7 +29,7 @@ "learning_rate": "constant", "learning_rate_init": 0.001, "power_t": 0.5, - "max_iter": 200, + "max_iter": 2, "shuffle": true, "random_state": null, "tol": 0.0001, diff --git a/tests/utils/MLPRegressor.json b/tests/utils/MLPRegressor.json index b206344..04fe687 100755 --- a/tests/utils/MLPRegressor.json +++ b/tests/utils/MLPRegressor.json @@ -21,7 +21,7 @@ { "py/object": "sklearn.neural_network.MLPRegressor", "py/state": { - "hidden_layer_sizes": [100], + "hidden_layer_sizes": [10], "activation": "relu", "solver": "adam", "alpha": 0.0001, @@ -29,7 +29,7 @@ "learning_rate": "constant", "learning_rate_init": 0.001, "power_t": 0.5, - "max_iter": 200, + "max_iter": 2, "shuffle": true, "random_state": null, "tol": 0.0001, diff --git a/tests/utils/test_run.py b/tests/utils/test_run.py index a9db7ae..c9ad463 100644 --- a/tests/utils/test_run.py +++ b/tests/utils/test_run.py @@ -22,10 +22,13 @@ def test_multiclass_classification(): assert ret == 0 ret = subprocess.call(['skdatasets/utils/run.py', '-r', 'uci', '-d', 'wine', '-e', 'tests/utils/MLPClassifier.json']) assert ret == 0 - + ret = subprocess.call(['skdatasets/utils/run.py', '-r', 'libsvm', '-c', 'multiclass', '-d', 'shuttle', '-e', 'tests/utils/MLPClassifier.json']) + assert ret == 0 + ret = subprocess.call(['skdatasets/utils/run.py', '-r', 'libsvm', '-c', 'multiclass', '-d', 'usps', '-e', 'tests/utils/MLPClassifier.json']) + assert ret == 0 + def test_regression(): """Tests regression experiment.""" ret = subprocess.call(['skdatasets/utils/run.py', '-r', 'libsvm', '-c', 'regression', '-d', 'housing', '-e', 'tests/utils/MLPRegressor.json']) assert ret == 0 - \ No newline at end of file diff --git a/tests/utils/test_scores.py b/tests/utils/test_scores.py deleted file mode 100644 index 2908654..0000000 --- a/tests/utils/test_scores.py +++ /dev/null @@ -1,47 +0,0 @@ -""" -Tests. - -@author: David Diaz Vico -@license: MIT -""" - -import numpy as np - -from skdatasets.utils.scores import scores_table, hypotheses_table - - -datasets = ['a4a', 'a8a', 'combined', 'dna', 'ijcnn1', 'letter', 'pendigits', - 'satimage', 'shuttle', 'usps', 'w7a', 'w8a'] -estimators = ['LogisticRegression', 'MLPClassifier0', 'MLPClassifier1', - 'MLPClassifier2', 'MLPClassifier3', 'MLPClassifier4', - 'MLPClassifier5'] -scores = np.asarray(((89.79, 89.78, 89.76, 89.88, 89.85, 89.91, 89.93), - (90.73, 90.73, 90.73, 90.85, 90.83, 90.81, 90.80), - (92.36, 92.31, 94.58, 94.82, 94.84, 94.92, 94.89), - (99.28, 99.27, 99.28, 99.26, 99.27, 99.25, 99.25), - (91.34, 91.34, 99.29, 99.33, 99.34, 99.53, 99.54), - (98.07, 98.04, 99.94, 99.95, 99.96, 99.96, 99.95), - (99.17, 99.08, 99.87, 99.87, 99.88, 99.90, 99.89), - (96.67, 96.28, 98.84, 98.87, 98.90, 98.87, 98.92), - (95.85, 92.83, 99.88, 99.93, 99.96, 99.98, 99.99), - (99.12, 99.11, 99.65, 99.58, 99.58, 99.65, 99.60), - (95.93, 95.40, 94.58, 96.31, 96.34, 96.58, 96.50), - (95.80, 95.99, 95.35, 96.20, 96.22, 96.36, 96.71))) - - -def test_scores_table(): - """Tests scores table.""" - scores_table(datasets, estimators, scores) - scores_table(datasets, estimators, scores, stds=scores/10.0) - - -def test_hypotheses_table(): - """Tests hypotheses table.""" - for multitest in ('kruskal', 'friedmanchisquare', None): - for test in ('mannwhitneyu', 'wilcoxon'): - hypotheses_table(scores, estimators, multitest=multitest, test=test) - for correction in ('bonferroni', 'sidak', 'holm-sidak', 'holm', - 'simes-hochberg', 'hommel', 'fdr_bh', 'fdr_by', - 'fdr_tsbh', 'fdr_tsbky'): - hypotheses_table(scores, estimators, multitest=multitest, - test=test, correction=correction) diff --git a/tests/utils/test_validation.py b/tests/utils/test_validation.py deleted file mode 100644 index 9d5da03..0000000 --- a/tests/utils/test_validation.py +++ /dev/null @@ -1,45 +0,0 @@ -""" -Tests. - -@author: David Diaz Vico -@license: MIT -""" - -import matplotlib.pyplot as plt -plt.switch_backend('agg') -from sklearn.datasets import load_boston, load_iris -from sklearn.decomposition import PCA -from sklearn.discriminant_analysis import LinearDiscriminantAnalysis -from sklearn.dummy import DummyRegressor -from sklearn.model_selection import GridSearchCV - -from skdatasets.utils.validation import scatter_plot, metaparameter_plot - - -def test_scatter_plot(): - """Tests scatter plot.""" - X, y = load_boston(return_X_y=True) - estimator = PCA(n_components=10) - estimator.fit(X, y) - image_files = scatter_plot(X, y, estimator) - assert len(image_files) == 1 - estimator = DummyRegressor() - estimator.fit(X, y) - image_files = scatter_plot(X, y, estimator) - assert len(image_files) == 1 - X, y = load_iris(return_X_y=True) - estimator = LinearDiscriminantAnalysis() - estimator.fit(X, y) - image_files = scatter_plot(X, y, estimator) - assert len(image_files) == 2 - - -def test_metaparameter_plot(): - """Tests metaparameter plot.""" - X, y = load_boston(return_X_y=True) - estimator = GridSearchCV(DummyRegressor(), - {'strategy': ['mean', 'median', 'constant'], - 'constant': [1.0, 2.0, 3.0]}) - estimator.fit(X, y) - image_files = metaparameter_plot(estimator) - assert len(image_files) == 1