-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgeometry_definitions.py
511 lines (398 loc) · 22.2 KB
/
geometry_definitions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
"""
The idea here is to define functions that return the building blocks
fuel elements/tie tubes, and that will fill these with the appropriate materials
The main function will plot both with sample materials
"""
import openmc
import numpy as np
import matplotlib.pyplot as plt
def get_material(materials, name):
"""
searches materials object for a matching name and returns it
"""
for material in materials:
if material.name == name:
return material
print(f'MATERIAL {name} NOT FOUND !!!')
def boreholes(origin_list, propellent, clad):
propellant_channel_diameter = 0.2565
propellant_channel_inner_cladding_thickness = 0.01
cells = []
fuel_region = None
channel_region = None
clad_region = None
for origin in origin_list:
inner_cyl = openmc.ZCylinder(origin[0], origin[1],
propellant_channel_diameter/2)
outer_cyl = openmc.ZCylinder(origin[0], origin[1],
(propellant_channel_diameter+
propellant_channel_inner_cladding_thickness)/
2)
if fuel_region is not None:
fuel_region = fuel_region | +outer_cyl
channel_region = channel_region | (-outer_cyl & +inner_cyl)
borehole_region = borehole_region | -inner_cyl
else:
fuel_region = +outer_cyl
channel_region = -outer_cyl & +inner_cyl
borehole_region = -inner_cyl
borehole = openmc.Cell(region = borehole_region, fill = propellent)
cladding = openmc.Cell(region= channel_region, fill = clad)
return borehole, cladding, fuel_region
def fuel_assembly(propellent, clad, fuel):
# build a single element
# Measurements from Schnitzler et al. 2012
pitch = 0.4089
y_pitch = pitch*np.cos(np.deg2rad(30))
assembly_cladding_thickness = 0.005
flat_to_flat = 1.905
flat_to_flat_fuel = flat_to_flat - assembly_cladding_thickness
assembly_edge_length = 0.5*flat_to_flat/np.cos(np.deg2rad(30))
fuel_edge_length = 0.5*flat_to_flat_fuel/np.cos(np.deg2rad(30))
fuel_assembly = openmc.model.HexagonalPrism(
orientation='x', edge_length=fuel_edge_length)
fuel_assembly_cladding = openmc.model.HexagonalPrism(
orientation='x', edge_length=assembly_edge_length)
# Borehole Cells
origin_list = [(0,0,0),
(-pitch*2,0,0),
(-pitch,0,0),
(pitch,0,0),
(2*pitch,0,0),
(-3/2*pitch, y_pitch, 0),
(-1/2*pitch, y_pitch, 0),
(1/2*pitch, y_pitch, 0),
(3/2*pitch, y_pitch, 0),
(-pitch, 2*y_pitch, 0),
(0, 2*y_pitch, 0),
(pitch, 2*y_pitch, 0),
(-3/2*pitch, -y_pitch, 0),
(-1/2*pitch, -y_pitch, 0),
(1/2*pitch, -y_pitch, 0),
(3/2*pitch, -y_pitch, 0),
(-pitch, -2*y_pitch, 0),
(0,-2*y_pitch, 0),
(pitch, -2*y_pitch, 0),]
borehole_cell, channel_clad_cell, fuel_region = boreholes(origin_list, propellent, clad)
fuel_region = -fuel_assembly & fuel_region
clad_region = -fuel_assembly_cladding & + fuel_assembly
fuel_cell = openmc.Cell(region=fuel_region, fill=fuel)
clad_cell = openmc.Cell(region=clad_region, fill=clad)
fuel_assembly_univ = openmc.Universe(cells = [borehole_cell,
channel_clad_cell,
fuel_cell,
clad_cell])
return fuel_assembly_univ
def tie_tube(hydrogen_inner, hydrogen_outer, inconel, ZrH, ZrC, ZrC_insulator, graphite):
#THIS IS A GUESS BASED ON THE FUEL ELEMENT
assembly_cladding_thickness = 0.005
inner_hydrogen_outer_radius = 0.20955
inner_tie_tube_outer_radius = 0.26035
first_gap_outer_radius = 0.26670
moderator_outer_radius = 0.58420
second_gap_outer_radius = 0.67818
outer_tie_tube_outer_radius = 0.69850
third_gap_outer_radius = 0.70485
insulator_outer_radius = 0.80645
fourth_gap_outer_radius = 0.81280
flat_to_flat = 1.905
flat_to_flat_inner = flat_to_flat-2*assembly_cladding_thickness
assembly_edge_length = 0.5*flat_to_flat/np.cos(np.deg2rad(30))
inner_edge_length = 0.5*flat_to_flat_inner/np.cos(np.deg2rad(30))
# OpenMC Geometry
inner_hydrogen = openmc.ZCylinder(r=inner_hydrogen_outer_radius)
inner_tie_tube = openmc.ZCylinder(r=inner_tie_tube_outer_radius)
first_gap = openmc.ZCylinder(r=first_gap_outer_radius)
moderator_tube = openmc.ZCylinder(r=moderator_outer_radius)
second_gap = openmc.ZCylinder(r=second_gap_outer_radius)
outer_tie_tube = openmc.ZCylinder(r=outer_tie_tube_outer_radius)
third_gap = openmc.ZCylinder(r=third_gap_outer_radius)
insulator = openmc.ZCylinder(r=insulator_outer_radius)
fourth_gap = openmc.ZCylinder(r=fourth_gap_outer_radius)
tie_tube_assembly = openmc.model.HexagonalPrism(orientation='x',
edge_length=inner_edge_length)
tie_tube_assembly_cladding = openmc.model.HexagonalPrism(orientation='x',
edge_length=assembly_edge_length)
# OpenMC Cells and Universes
inner_hydrogen_cell = openmc.Cell(region=-inner_hydrogen, fill=hydrogen_inner)
inner_tie_tube_cell = openmc.Cell(
region=+inner_hydrogen & - inner_tie_tube, fill=inconel)
first_gap_cell = openmc.Cell(region=+inner_tie_tube & -first_gap, fill=hydrogen_outer)
moderator_tube_cell = openmc.Cell(region=+first_gap & -moderator_tube,fill=ZrH)
outer_hydrogen_cell = openmc.Cell(region=+moderator_tube & -second_gap, fill=hydrogen_outer)
outer_tie_tube_cell = openmc.Cell(region=+second_gap & -outer_tie_tube, fill=inconel)
third_gap_cell = openmc.Cell(region=+outer_tie_tube & -third_gap, fill=hydrogen_outer)
insulator_cell = openmc.Cell(region=+outer_tie_tube & -insulator,fill = ZrC_insulator)
fourth_gap_cell = openmc.Cell(region=+insulator & -fourth_gap, fill=hydrogen_outer)
tie_tube_assembly_cell = openmc.Cell(region=-tie_tube_assembly & +fourth_gap, fill=graphite)
tie_tube_assembly_cladding_cell = openmc.Cell(
region=+tie_tube_assembly & -tie_tube_assembly_cladding, fill=ZrC)
# Full Tie Tube Assembly
tie_tube_assembly_universe = openmc.Universe(cells=[inner_hydrogen_cell, inner_tie_tube_cell, first_gap_cell,
moderator_tube_cell, outer_hydrogen_cell, outer_tie_tube_cell,
third_gap_cell, insulator_cell, fourth_gap_cell,
tie_tube_assembly_cell, tie_tube_assembly_cladding_cell])
return tie_tube_assembly_universe
def reflector(poison_material, reflector_material, bolt_material,
reflector_id = 67.31,reflector_thickness = 14.7,
drum_radius = 12.7/2, poison_thickness = 0.65,
poison_angle_span = 120,
sector_bolt_diameter = 1.057,
drum_bolt_diameter = 0.478,
clocking = 0):
def get_poison_planes(clocking_angle, poison_angle):
#return 2 planes +/- poison_angle/2 from the clocking angle
angle1 = np.deg2rad(clocking_angle-poison_angle/2)
angle2 = np.deg2rad(clocking_angle+poison_angle/2)
plane1 = openmc.Plane.from_points((0,0,0),(0,0,1),(np.cos(angle1),
np.sin(angle1),
0))
plane2 = openmc.Plane.from_points((0,0,0),(0,0,1),(np.cos(angle2),
np.sin(angle2),
0))
return plane1, plane2
def get_12_regions(region):
# Turn 1 drum/poison region into 12
full_region = region
angles = np.linspace(30, 360, 11)
for angle in angles:
full_region = (full_region |
region.rotate((0,0,-angle)))
return full_region
reflector_od = reflector_id + 2*reflector_thickness
drum_od = openmc.ZCylinder(r=drum_radius)
poison_id = openmc.ZCylinder(r=drum_od.r-poison_thickness)
poison_plane_1, poison_plane_2 = get_poison_planes(clocking,
poison_angle_span)
drum_tie_bolt = openmc.ZCylinder(r=drum_bolt_diameter/2)
sector_tie_bolt_cyl = openmc.ZCylinder(r=sector_bolt_diameter/2)
sector_bolt1_region = -sector_tie_bolt_cyl
sector_bolt2_region = -sector_tie_bolt_cyl
sector_bolt1_region = sector_bolt1_region.translate((-reflector_id/2-2/3*reflector_thickness,0,0))
sector_bolt2_region = sector_bolt2_region.translate((-reflector_id/2-1/3*reflector_thickness,0,0))
sector_bolt_region = sector_bolt1_region | sector_bolt2_region
sector_bolt_region = sector_bolt_region.rotate((0,0,15))
poison_region = +poison_id & -drum_od & +poison_plane_1 & -poison_plane_2
drum_region = -drum_od & +drum_tie_bolt & ~poison_region
drum_bolt_region = -drum_tie_bolt
poison_region = poison_region.translate((-(reflector_id+reflector_od)/4,
0,
0))
drum_region = drum_region.translate((-(reflector_id+reflector_od)/4,
0,
0))
drum_bolt_region = drum_bolt_region.translate((-(reflector_id+reflector_od)/4,
0,
0))
drum_region = get_12_regions(drum_region)
poison_region = get_12_regions(poison_region)
sector_bolt_region = get_12_regions(sector_bolt_region)
drum_bolt_region = get_12_regions(drum_bolt_region)
poison_cell = openmc.Cell(region=poison_region, fill=poison_material)
drum_cell = openmc.Cell(region=drum_region, fill=reflector_material)
sector_bolt_cell = openmc.Cell(region=sector_bolt_region, fill=bolt_material)
drum_bolt_cell = openmc.Cell(region=drum_bolt_region, fill = bolt_material)
reflector_inner_surface = openmc.ZCylinder(r=reflector_id/2)
reflector_outer_surface = openmc.ZCylinder(r=reflector_od/2)
reflector_region = (-reflector_outer_surface &
+reflector_inner_surface &
~drum_region & ~poison_region)
reflector_cell = openmc.Cell(region=reflector_region, fill=reflector_material)
reflector_universe = openmc.Universe(cells=[reflector_cell,
drum_cell,
poison_cell,
sector_bolt_cell,
drum_bolt_cell])
return reflector_universe
def beryllium_assembly(Be, ZrC):
# Measurements from Schnitzler et al. 2012
assembly_cladding_thickness = 0.005
flat_to_flat = 1.905
flat_to_flat_inner = flat_to_flat-2*assembly_cladding_thickness
assembly_edge_length = 0.5*flat_to_flat/np.cos(np.deg2rad(30))
inner_edge_length = 0.5*flat_to_flat_inner/np.cos(np.deg2rad(30))
# OpenMC Geometry:
beryllium_assembly = openmc.model.HexagonalPrism(orientation='x',
edge_length=inner_edge_length)
beryllium_assembly_cladding = openmc.model.HexagonalPrism(orientation='x',
edge_length=assembly_edge_length)
# Cells and Universes:
beryllium_assembly_cell = openmc.Cell(region=-beryllium_assembly, fill=Be)
beryllium_assembly_cladding_cell = openmc.Cell(
region=+beryllium_assembly & -beryllium_assembly_cladding, fill=ZrC)
beryllium_assembly_universe = openmc.Universe(cells=[beryllium_assembly_cell, beryllium_assembly_cladding_cell])
return beryllium_assembly_universe
def core_lattice_SNRE(tie_tube_universe, fuel_assembly_universe, beryllium_universe):
# Measurements from Schnitzler et al. 2012
assembly_pitch = 1.905
# Makes things easier to type:
TT = tie_tube_universe
FA = fuel_assembly_universe
BE = beryllium_universe
core_lattice = openmc.HexLattice()
core_lattice.orientation = "y"
core_lattice.pitch = (assembly_pitch,)
core_lattice.universes = [[BE, BE, BE, BE, BE, BE, BE, BE, BE, BE, BE, BE, BE, BE, BE, BE, BE, BE]*6,
[BE, BE, BE, BE, BE, BE, BE, FA, FA, FA, FA, BE, BE, BE, BE, BE, BE]*6,
[BE, BE, BE, FA, FA, FA, FA, FA, TT, FA, FA, FA, FA, FA, BE, BE]*6,
[BE, FA, FA, TT, FA, FA, TT, FA, FA, TT, FA, FA, TT, FA, FA]*6,
[FA, TT, FA, FA, TT, FA, FA, TT, FA, FA, TT, FA, FA, TT]*6,
[FA, FA, TT, FA, FA, TT, FA, FA, TT, FA, FA, TT, FA]*6,
[TT, FA, FA, TT, FA, FA, TT, FA, FA, TT, FA, FA]*6,
[FA, TT, FA, FA, TT, FA, FA, TT, FA, FA, TT]*6,
[FA, FA, TT, FA, FA, TT, FA, FA, TT, FA]*6,
[TT, FA, FA, TT, FA, FA, TT, FA, FA]*6,
[FA, TT, FA, FA, TT, FA, FA, TT]*6,
[FA, FA, TT, FA, FA, TT, FA]*6,
[TT, FA, FA, TT, FA, FA]*6,
[FA, TT, FA, FA, TT]*6,
[FA, FA, TT, FA]*6,
[TT, FA, FA]*6,
[FA, TT]*6,
[FA]*6,
[TT]]
core_lattice.center=(0.0,0.0)
core_lattice_cell = openmc.Cell(fill=core_lattice)
core_lattice_universe = openmc.Universe(cells=[core_lattice_cell])
return core_lattice_universe
def inner_reflector(Core, Gap, SS, Be_Barrel):
#Measurements from Schnitzler et al. 2007
inner_gap_inner_radius = 29.5275
inner_gap_outer_radius = 29.8450
stainless_steel_outer_radius = 30.1625
middle_gap_outer_radius = 30.48
be_barrel_outer_radius = 33.3375
outer_gap_outer_radius = 33.6550
# OpenMC Geometry:
inner_gap_inner = openmc.ZCylinder(r=inner_gap_inner_radius)
inner_gap_outer = openmc.ZCylinder(r=inner_gap_outer_radius)
wrapper = openmc.ZCylinder(r=stainless_steel_outer_radius)
middle_gap = openmc.ZCylinder(r=middle_gap_outer_radius)
be_barrel = openmc.ZCylinder(r=be_barrel_outer_radius)
outer_gap = openmc.ZCylinder(r=outer_gap_outer_radius)
# OpenMC Cells and Universes:
core_cell = openmc.Cell(region=-inner_gap_inner, fill=Core)
inner_gap_cell = openmc.Cell(region = -inner_gap_outer & + inner_gap_inner, fill=Gap)
stainless_steel_wrapper_cell = openmc.Cell (region = +inner_gap_outer & -wrapper, fill=SS)
middle_gap_cell = openmc.Cell(region = +wrapper & -middle_gap, fill=Gap)
be_barrel_cell = openmc.Cell(region = +middle_gap & -be_barrel, fill=Be_Barrel)
outer_gap_cell = openmc.Cell(region = +be_barrel & -outer_gap, fill=Gap)
reflector_universe = openmc.Universe(cells=[core_cell, inner_gap_cell,
stainless_steel_wrapper_cell,
middle_gap_cell, be_barrel_cell,
outer_gap_cell])
return reflector_universe
def full_core(inner_reflector_universe, poison_mat, reflector_mat, bolt_mat, core_height, drum_clocking):
inner_reflector_outer_radius = 33.6550
reflector_outer_radius = inner_reflector_outer_radius + 14.7
# OpenMC Geometry:
inner_reflector_outer_boundary = openmc.ZCylinder(r=inner_reflector_outer_radius)
outer_reflector_outer_boundary = openmc.ZCylinder(r=reflector_outer_radius)
core_bottom = openmc.ZPlane(z0=-core_height/2)
core_top = openmc.ZPlane(z0=core_height/2)
outer_reflector_outer_boundary.boundary_type = 'vacuum'
core_bottom.boundary_type = 'vacuum'
core_top.boundary_type = 'vacuum'
# OpenMC Cells and Universes:
reflector_universe = reflector(poison_mat, reflector_mat, bolt_mat, clocking=drum_clocking)
inner_reflector_cell = openmc.Cell(region = -inner_reflector_outer_boundary
& +core_bottom & -core_top, fill = inner_reflector_universe)
reflector_cell = openmc.Cell(region= +inner_reflector_outer_boundary & -outer_reflector_outer_boundary
& +core_bottom & -core_top, fill=reflector_universe)
full_core_universe = openmc.Universe(cells=[inner_reflector_cell, reflector_cell])
return full_core_universe
def get_model(height, clocking, graphite_fuel='graphite_fuel_435U_30C'):
"""
returns a full core with the given height, drum clocking, and fuel,
distributed source over core region, and shannon entropy mesh.
"""
inner_gap_inner_radius = 29.5275
materials = openmc.Materials.from_xml('materials.xml')
# changes these materials as necessary, probably only fuel
graphite_fuel = get_material(materials, graphite_fuel)
hydrogen = get_material(materials, 'Hydrogen STP')
ZrC = get_material(materials, "zirconium_carbide")
inconel = get_material(materials, "inconel-718")
ZrH = get_material(materials, "zirconium_hydride_II")
ZrC_insulator = get_material(materials, "zirconium_carbide_insulator")
graphite = get_material(materials, "graphite_carbon")
beryllium = get_material(materials, 'Beryllium')
SS316L = get_material(materials, "SS316L")
poison = get_material(materials, "copper_boron")
# make all the sub elements of the reactor
FA = fuel_assembly(hydrogen, ZrC, graphite_fuel)
TT = tie_tube(hydrogen,hydrogen,inconel,ZrH,ZrC,ZrC_insulator,graphite)
BE = beryllium_assembly(beryllium, ZrC)
core_lattice_SNRE_geom = openmc.Geometry(core_lattice_SNRE(TT, FA, BE))
core_lattice_SNRE_geom.plot(pixels=(800, 800), width=(60, 60),
color_by='material')
core = core_lattice_SNRE(TT,FA,BE)
inner_reflector_universe = inner_reflector(core, hydrogen, SS316L, beryllium)
# combine them into a full core
full_core_geom = openmc.Geometry(full_core(inner_reflector_universe, poison,
beryllium, inconel, height, clocking))
#setup shannon entropy
lower_left = (-inner_gap_inner_radius, -inner_gap_inner_radius, -height/2)
upper_right = (inner_gap_inner_radius, inner_gap_inner_radius, height/2)
entropy_mesh = openmc.RegularMesh()
entropy_mesh.lower_left = lower_left
entropy_mesh.upper_right = upper_right
entropy_mesh.dimension = [30,30,10]
#setup source sampling
uniform_dist = openmc.stats.Box(lower_left, upper_right,
only_fissionable = True)
settings = openmc.Settings()
settings.entropy_mesh = entropy_mesh
settings.source = openmc.IndependentSource(space=uniform_dist)
model = openmc.Model(materials=materials, settings=settings,
geometry=full_core_geom)
return model
def main():
# plot a sample geometry by material type
materials = openmc.Materials.from_xml('materials.xml')
hydrogen = get_material(materials, "Hydrogen STP")
ZrC = get_material(materials, "zirconium_carbide")
graphite_fuel = get_material(materials, "graphite_fuel_70U_15C")
ZrH = get_material(materials, 'zirconium_hydride_II')
inconel = get_material(materials, "inconel-718")
ZrC_insulator = get_material(materials,'zirconium_carbide_insulator')
graphite = get_material(materials, 'graphite_carbon')
poison = get_material(materials, 'copper_boron')
beryllium = get_material(materials, 'Beryllium')
SS316L = get_material(materials, "SS316L")
fuel_assembly_geom = openmc.Geometry(fuel_assembly(hydrogen, ZrC, graphite_fuel))
fuel_assembly_geom.plot(pixels=(1200, 1200), width=(3, 3), color_by='material')
plt.savefig('fuel_element_by_material.png')
fuel_assembly_geom.plot(pixels=(1200, 1200), width=(3, 3), color_by='cell')
plt.savefig('fuel_element_by_cell.png')
tie_tube_geom = openmc.Geometry(tie_tube(hydrogen,hydrogen,inconel,ZrH,ZrC,ZrC_insulator,graphite))
tie_tube_geom.plot(pixels=(800, 800), width=(3, 3), color_by='material')
plt.savefig('tie_tube_element_by_material.png')
tie_tube_geom.plot(pixels=(800, 800), width=(3, 3), color_by='cell')
plt.savefig('tie_tube_element_by_cell.png')
reflector_univ = reflector(poison, beryllium, inconel)
reflector_univ.plot(pixels=(800, 800), width=(100, 100), color_by='material')
plt.savefig('reflector_by_material.png')
reflector_univ.plot(pixels=(800, 800), width=(100, 100), color_by='cell')
plt.savefig('reflector_by_cell.png')
beryllium_assembly_geom = openmc.Geometry(beryllium_assembly(beryllium, ZrC))
beryllium_assembly_geom.plot(pixels=(800, 800), width=(3, 3), color_by='material')
plt.savefig('beryllium_assembly.png')
FA = fuel_assembly(hydrogen, ZrC, graphite_fuel)
TT = tie_tube(hydrogen,hydrogen,inconel,ZrH,ZrC,ZrC_insulator,graphite)
BE = beryllium_assembly(beryllium, ZrC)
core_lattice_SNRE_geom = openmc.Geometry(core_lattice_SNRE(TT, FA, BE))
core_lattice_SNRE_geom.plot(pixels=(800, 800), width=(60, 60), color_by='material')
plt.savefig('SNRE_full_lattice.png')
core = core_lattice_SNRE(TT,FA,BE)
inner_reflector_universe = inner_reflector(core, hydrogen, SS316L, beryllium)
inner_reflector_geom = openmc.Geometry(inner_reflector_universe)
inner_reflector_geom.plot(pixels=(800, 800), width=(70, 70), color_by='material')
plt.savefig('SNRE_full_lattice_with_inner_reflector.png')
full_core_geom = openmc.Geometry(full_core(inner_reflector_universe, poison, beryllium, inconel, 100, 20.7))
full_core_geom.plot(pixels=(800, 800), width=(100, 100), color_by='material')
plt.savefig('SNRE_full_core_radial_cross_section.png')
full_core_geom.plot(pixels=(800, 800), width=(100, 100), basis='xz', color_by='material')
plt.savefig('SNRE_full_core_axial_cross_section.png')
if __name__ == '__main__':
main()