-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsibi_detection.py
86 lines (67 loc) · 3.19 KB
/
sibi_detection.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
APIMODEL_PATH = 'models'
ANNOTATION_PATH = 'data'
IMAGE_PATH = 'images'
CONFIG_PATH = 'training/pipeline.config'
CHECKPOINT_PATH = 'training'
PRETRAINED_MODEL_PATH = 'ssd_mobilenet_v2_fpnlite_320x320_coco17_tpu-8'
MODEL_PATH = 'training'
import tensorflow as tf
from object_detection.utils import config_util
from object_detection.protos import pipeline_pb2
from google.protobuf import text_format
CONFIG_PATH = 'training/pipeline.config'
import os
from object_detection.utils import label_map_util
from object_detection.utils import visualization_utils as viz_utils
from object_detection.builders import model_builder
# Load pipeline config and build a detection model
configs = config_util.get_configs_from_pipeline_file(CONFIG_PATH)
detection_model = model_builder.build(model_config=configs['model'], is_training=False)
# Restore checkpoint
ckpt = tf.compat.v2.train.Checkpoint(model=detection_model)
ckpt.restore(os.path.join(CHECKPOINT_PATH, 'ckpt-106')).expect_partial()
@tf.function
def detect_fn(image):
image, shapes = detection_model.preprocess(image)
prediction_dict = detection_model.predict(image, shapes)
detections = detection_model.postprocess(prediction_dict, shapes)
return detections
import cv2
import numpy as np
category_index = label_map_util.create_category_index_from_labelmap(ANNOTATION_PATH+'/label_map.pbtxt')
# Setup capture
cap = cv2.VideoCapture(0)
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
while True:
ret, frame = cap.read()
image_np = np.array(frame)
input_tensor = tf.convert_to_tensor(np.expand_dims(image_np, 0), dtype=tf.float32)
detections = detect_fn(input_tensor)
num_detections = int(detections.pop('num_detections'))
detections = {key: value[0, :num_detections].numpy()
for key, value in detections.items()}
detections['num_detections'] = num_detections
# detection_classes should be ints.
detections['detection_classes'] = detections['detection_classes'].astype(np.int64)
label_id_offset = 1
image_np_with_detections = image_np.copy()
viz_utils.visualize_boxes_and_labels_on_image_array(
image_np_with_detections,
detections['detection_boxes'],
detections['detection_classes']+label_id_offset,
detections['detection_scores'],
category_index,
use_normalized_coordinates=True,
max_boxes_to_draw=20,
min_score_thresh=0.85,
agnostic_mode=False)
cv2.imshow('object detection', cv2.resize(image_np_with_detections, (800, 600)))
if cv2.waitKey(1) & 0xFF == ord('q'):
cap.release()
break
detections = detect_fn(input_tensor)
from matplotlib import pyplot as plt
# python models/research/object_detection/model_main_tf2.py --model_dir=training --pipeline_config_path=training/pipeline.config --num_train_steps=105000
# python models/research/object_detection/model_main_tf2.py --pipeline_config_path=training/pipeline.config --model_dir=training --alsologtostderr --checkpoint_dir=training
# python C:\Users\7373\AppData\Roaming\Python\Python37\site-packages\tensorboard\main.py --logdir=training