diff --git a/unimol/README.md b/unimol/README.md index 0f9fdb0..6b0b930 100644 --- a/unimol/README.md +++ b/unimol/README.md @@ -278,6 +278,12 @@ For QM7, QM8 and QM9, we set `loss_func=finetune_smooth_mae`. Molecular conformation generation ------------------ +**NOTE**: If you would like to reproduce the results from the paper, you can switch to commit 37b0198 or an earlier commit by using the following command: +``` +git checkout 37b0198cf68a349a854410a06777c2e7dacbce5e +``` +**Reproduction** + 1. Finetune Uni-Mol pretrained model on the training set of the conformation generation task: ```bash diff --git a/unimol/unimol/losses/reg_loss.py b/unimol/unimol/losses/reg_loss.py index 0f27e77..d567a9c 100644 --- a/unimol/unimol/losses/reg_loss.py +++ b/unimol/unimol/losses/reg_loss.py @@ -192,7 +192,7 @@ def reduce_metrics(logging_outputs, split="valid") -> None: .numpy() .mean(axis=1) ) - agg_mae = np.abs(y_pred - y_true).mean(axis=0).mean(axis=1) + agg_mae = np.abs(y_pred - y_true).mean() metrics.log_scalar(f"{split}_agg_mae", agg_mae, sample_size, round=4)