-
Notifications
You must be signed in to change notification settings - Fork 62
/
Copy pathrun_checkpoints_cot.sh
executable file
·62 lines (57 loc) · 2.54 KB
/
run_checkpoints_cot.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
#!/bin/zsh
model_names=("sqlcoder_8b_fullft_ds_012_llama3_old_join_hints_mgn1_b1_0900_b2_0990_steps_600")
db_type="postgres"
PORT=8083 # avoid 8081 as it's used by nginx
export CUDA_VISIBLE_DEVICES=1 # set gpu you want to use (just 1 will do)
# if db_type not postgres or sqlite, prompt_file should be prompts/prompt_cot.md else use prompts/prompt_cot_${dbtype}.md
if [ "$db_type" != "postgres" ] && [ "$db_type" != "sqlite" ]; then
prompt_file="prompts/prompt_cot.md"
else
prompt_file="prompts/prompt_cot_${db_type}.md"
fi
# Loop over model names
for model_name in "${model_names[@]}"; do
# list the folder names in /models/combined/${model_name}
model_dir="/workspace/finetuning/models/${model_name}"
echo "Model directory: ${model_dir}"
checkpoints=($(ls $model_dir))
echo "Checkpoints: ${checkpoints}"
# Loop over checkpoints
for checkpoint in "${checkpoints[@]}"; do
# skip if does not start with "checkpoint-"
if [[ ! $checkpoint == checkpoint-* ]]; then
continue
fi
model_path="${model_dir}/${checkpoint}"
checkpoint_num=$(echo $checkpoint | cut -d'-' -f2)
echo "Running model ${model_name} checkpoint ${checkpoint_num}"
# first, get the API up
python3 utils/api_server.py --model "$model_path" --tensor-parallel-size 1 --dtype float16 --max-model-len 8192 --gpu-memory-utilization 0.90 --block-size 16 --disable-log-requests --port "${PORT}" &
# run a loop to check if the http://localhost:8080/health endpoint returns a valid 200 result
while true; do
http_status=$(curl -s -o /dev/null -w "%{http_code}" "http://localhost:${PORT}/health")
if [ "$http_status" -eq 200 ]; then
echo "API server is up and running"
break
else
echo "Waiting for API server to be up..."
sleep 1
fi
done
# then run sql-eval
python3 main.py -db "${db_type}" \
-f "${prompt_file}" \
-q "data/questions_gen_${db_type}.csv" "data/instruct_basic_${db_type}.csv" "data/instruct_advanced_${db_type}.csv" "data/idk.csv" \
-o "results/${model_name}/c${checkpoint_num}_api_v1_cot.csv" "results/${model_name}/c${checkpoint_num}_api_basic_cot.csv" "results/${model_name}/c${checkpoint_num}_api_advanced_cot.csv" "results/${model_name}/c${checkpoint_num}_api_idk_cot.csv" \
-g api \
-b 1 \
-c 0 \
--api_url "http://localhost:${PORT}/generate" \
--api_type "vllm" \
-p 10 \
--cot_table_alias "prealias" \
--logprobs
# finally, kill the api server
pkill -9 -f "python3 utils/api_server.py.*--port ${PORT}"
done
done