Skip to content

Latest commit

 

History

History
19 lines (15 loc) · 615 Bytes

README.md

File metadata and controls

19 lines (15 loc) · 615 Bytes

Personal portfolio

Summary of some of my personal work

1. Kaggle Petfinder

  • Deep Learning
  • Computer Vision
  • Regression
  • Goal: Given a pet image an addional metadata -> predict the image social score
  • Framework: Pytorch on GPU
  • Experiments:
    • Xgboost (EfficientNet b0 feature extraction + metadata)
    • ConvNet (EfficientNet b0)
    • MLP based on Backbone (EfficientNet b0 + MLP Metadata)
    • MLP based on Backbone (EfficientNet b1 + MLP Metadata)
  • Best model: MLP based on Backbone (EfficientNet b2 + MLP Metadata)
    • Kaggle test set RMSE: ~ 19. (best rank: p50 of the leaderboard)