-
Notifications
You must be signed in to change notification settings - Fork 41
/
Copy pathcnn_dataset.py
175 lines (136 loc) · 4.84 KB
/
cnn_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
from pathlib import Path
from multiprocessing import cpu_count
import numpy as np
import matplotlib.pyplot as plt
import torch
from torch import nn
from torch import optim
from torch.nn import functional as F
from torch.utils.data import DataLoader
from torchvision import transforms, utils
from torchvision.datasets import ImageFolder
from core.loop import Loop
from core.schedule import CosineAnnealingLR
from core.metrics import accuracy
from core.callbacks import (
Logger, History, EarlyStopping, CSVLogger, Checkpoint)
DEVICE = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
MEAN = np.array([0.4914, 0.48216, 0.44653])
STD = np.array([0.24703, 0.24349, 0.26159])
def conv3x3(ni, nf, stride=1, padding=1):
return nn.Conv2d(ni, nf, kernel_size=3, stride=stride, padding=padding,
bias=False)
class IdentityBlock(nn.Module):
def __init__(self, ni, nf=None, stride=1):
super().__init__()
nf = ni if nf is None else nf
self.conv1 = conv3x3(ni, nf, stride=stride)
self.bn1 = nn.BatchNorm2d(nf)
self.conv2 = conv3x3(nf, nf)
self.bn2 = nn.BatchNorm2d(nf)
if ni != nf:
self.downsample = nn.Sequential(
nn.Conv2d(ni, nf, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(nf))
def forward(self, x):
shortcut = x
out = self.conv1(x)
out = self.bn1(out)
out = F.leaky_relu(out)
out = self.conv2(out)
out = self.bn2(out)
if hasattr(self, 'downsample'):
shortcut = self.downsample(x)
out += shortcut
out = F.leaky_relu(out)
return out
class CustomResNet(nn.Module):
def __init__(self):
super().__init__()
self.conv = nn.Conv2d(3, 10, kernel_size=5, stride=1, padding=2)
self.block1 = IdentityBlock(10, 20, stride=2)
self.block2 = IdentityBlock(20, 40, stride=2)
self.block3 = IdentityBlock(40, 80, stride=2)
self.block4 = IdentityBlock(80, 160, stride=2)
self.avgpool = nn.AdaptiveAvgPool2d(1)
self.fc = nn.Linear(160, 10)
self.init()
def forward(self, x):
x = self.conv(x)
x = self.block1(x)
x = self.block2(x)
x = self.block3(x)
x = self.block4(x)
x = self.avgpool(x)
x = x.view(x.size(0), -1)
x = self.fc(x)
return x
def init(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out')
elif isinstance(m, nn.BatchNorm2d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
def pairs(xs):
current, *rest = xs
for item in rest:
yield current, item
current = item
def imshow(image, title=None):
img = image.numpy().transpose((1, 2, 0))
img = STD*img + MEAN
img = np.clip(img, 0, 1)
plt.imshow(img)
if title is not None:
plt.title(title)
plt.pause(0.001)
def main():
root = Path.home() / 'data' / 'cifar10'
data_transforms = {
'train': transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(mean=MEAN, std=STD)
]),
'valid': transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=MEAN, std=STD)
])
}
datasets, loaders, dataset_sizes = {}, {}, {}
for name in ('train', 'valid'):
dataset = ImageFolder(root/name, data_transforms[name])
training = name == 'train'
datasets[name] = dataset
loaders[name] = DataLoader(
dataset=dataset, batch_size=256,
shuffle=training, num_workers=cpu_count())
dataset_sizes[name] = len(dataset)
n = len(datasets['train'])
model = CustomResNet()
optimizer = optim.Adam(model.parameters(), lr=1e-2, weight_decay=1e-5)
schedule = CosineAnnealingLR(optimizer, t_max=n, eta_min=1e-5, cycle_mult=2)
loop = Loop(model, optimizer, schedule, device=DEVICE)
callbacks = [
History(), CSVLogger(), Logger(),
EarlyStopping(patience=50), Checkpoint()]
loop.run(
train_data=loaders['train'],
valid_data=loaders['valid'],
callbacks=callbacks,
loss_fn=F.cross_entropy,
metrics=[accuracy],
epochs=150)
dataset = datasets['valid']
loader = DataLoader(dataset=dataset, batch_size=8, shuffle=True)
x, y = next(iter(loader))
state = torch.load(loop['Checkpoint'].best_model)
model.load_state_dict(state)
predictions = model(x.cuda())
labels = predictions.argmax(dim=1)
verbose = [dataset.classes[name] for name in labels]
imshow(utils.make_grid(x), title=verbose)
if __name__ == '__main__':
main()