-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathestimator.py
40 lines (33 loc) · 1.25 KB
/
estimator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
import torch
class SoilMoistureEstimator(torch.nn.Module):
SMOOTH_KERNEL_SIZE = (4, 4)
AVERAGE_KERNEL_SIZE = (64, 64)
def get_estimator(path='estimator_weights.pkl') -> torch.nn.Module:
model = SoilMoistureEstimator()
model.load_state_dict(torch.load(path))
model.eval()
return model
def __init__(self):
super().__init__()
self.smoothing = torch.nn.AvgPool2d(SoilMoistureEstimator.SMOOTH_KERNEL_SIZE)
self.feedforward = torch.nn.Sequential(
torch.nn.Conv2d(3, 10, 1),
torch.nn.Tanh(),
torch.nn.Conv2d(10, 10, 1),
torch.nn.Tanh(),
torch.nn.Conv2d(10, 1, 1),
torch.nn.Sigmoid()
)
self.average = torch.nn.AvgPool2d(SoilMoistureEstimator.AVERAGE_KERNEL_SIZE)
self.initialize_weights()
def forward(self, x0):
x1 = self.smoothing(x0)
x2 = self.feedforward(x1)
x3 = self.average(x2).squeeze()
return x3
def initialize_weights(self):
for m in self.modules():
if isinstance(m, torch.nn.Conv2d):
torch.nn.init.xavier_uniform_(m.weight)
if m.bias is not None:
torch.nn.init.constant_(m.bias, 0)