Skip to content

Latest commit

 

History

History
120 lines (97 loc) · 5.16 KB

README.md

File metadata and controls

120 lines (97 loc) · 5.16 KB

VQ-GNN: A Universal Framework to Scale up Graph Neural Networks using Vector Quantization

Official implementation of our VQ-GNN paper (NeurIPS2021).

TL;DR: VQ-GNN, a principled universal framework to scale up GNNs using Vector Quantization (VQ) without compromising the performance. In contrast to sampling-based techniques, our approach can effectively preserve all the messages passed to a mini-batch of nodes by learning and updating a small number of quantized reference vectors of global node representations.

Experiments

To reproduce the experimental results in the paper, install the required packages and use the commands listed below.

Requirements

  • torch >= 1.9.0
  • torch-geometric >= 1.7.2
  • ogb >= 1.3.1

Commands

ogbn-arxiv GCN

cd vq_gnn_v2
python main_node.py --num-D 4 --conv-type GCN --dataset arxiv --num-parts 80 --batch-size 40 --test-batch-size 40 --lr 1e-3 --sampler-type cluster

ogbn-arxiv SAGE-Mean

cd vq_gnn_v2
python main_node.py --num-D 4 --conv-type SAGE --dataset arxiv --num-parts 20 --batch-size 10 --test-batch-size 10 --lr 1e-3 --sampler-type cluster

ogbn-arxiv GAT

cd vq_gnn_v2
python main_node.py --num-D 4 --conv-type GAT --dataset arxiv --num-parts 20 --batch-size 10 --test-batch-size 10 --lr 1e-3 --sampler-type cluster

ppi GCN

cd vq_gnn_v2
python main_node.py --hidden-channels 256  --lr 3e-3 --epochs 5000 --batch-size 30000 --test-batch-size 0 --num-M 4096 --num-D 4  --conv-type GCN --sampler-type node --dataset ppi --skip

ppi SAGE-Mean

cd vq_gnn_v2
python main_node.py --hidden-channels 256  --lr 3e-3 --epochs 5000 --batch-size 30000 --test-batch-size 0 --num-M 4096 --num-D 4  --conv-type SAGE --sampler-type node --dataset ppi --skip

ppi GAT

cd vq_gnn_v2
python main_node.py --hidden-channels 256  --lr 3e-3 --epochs 5000 --batch-size 10000 --test-batch-size 0 --num-M 4096 --num-D 4  --conv-type GAT --sampler-type node --dataset ppi --skip

ogbl-collab GCN

cd vq_gnn_v2
python main_link.py  --lr 3e-3 --epochs 400 --log-steps 1  --batch-size 50000 --test-batch-size 80000 --num-M 1024 --num-D 4  --conv-type GCN --sampler-type cont --walk-length 15 --cont-sliding-window 1 --dataset collab --skip

ogbl-collab SAGE-Mean

cd vq_gnn_v2
python main_link.py  --lr 3e-3 --epochs 400 --log-steps 1  --batch-size 50000 --test-batch-size 80000 --num-M 1024 --num-D 4  --conv-type SAGE --sampler-type cont --walk-length 15 --cont-sliding-window 1 --dataset collab

ogbl-collab GAT

cd vq_gnn_v2
python main_link.py  --lr 3e-3 --epochs 400 --log-steps 1  --batch-size 20000 --test-batch-size 80000 --num-M 1024 --num-D 4  --conv-type GAT --sampler-type cont --walk-length 15 --cont-sliding-window 1 --dataset collab --skip

reddit GCN

cd vq_gnn_v1
python main_node.py --hidden-channels 128 --dropout 0 --lr 1e-3 --epochs 100 --batch-size 10000 --test-batch-size 50000 --num-M 1024 --num-D 4 --grad-scale 1 1 --warm-up --momentum 0.1 --conv-type GCN --dataset reddit --sampler-type cont --walk-length 3 --cont-sliding-window 1  --recovery-flag --bn-flag

reddit SAGE-Mean

cd vq_gnn_v1
python main_node.py --hidden-channels 128 --dropout 0 --lr 1e-3 --epochs 100 --batch-size 6000 --test-batch-size 50000 --num-M 1024 --num-D 4 --grad-scale 1 1 --warm-up --momentum 0.1 --conv-type SAGE --dataset reddit --sampler-type cont --walk-length 3 --cont-sliding-window 1  --recovery-flag --bn-flag 

reddit GAT

cd vq_gnn_v1
python main_node.py --hidden-channels 128 --dropout 0 --lr 1e-3 --epochs 100 --batch-size 2000 --test-batch-size 5000 --num-M 1024 --num-D 4 --grad-scale 1 1 --warm-up --momentum 0.1 --conv-type GAT --dataset reddit --sampler-type cont --walk-length 3 --cont-sliding-window 1  --recovery-flag --bn-flag 

flickr GCN

cd vq_gnn_v1
python main_node.py --hidden-channels 128 --dropout 0 --lr 1e-3 --epochs 100 --batch-size 50000 --test-batch-size 0 --num-M 1024 --num-D 4 --grad-scale 1 1 --warm-up --momentum 0.1 --conv-type GCN --dataset flickr --sampler-type cont --walk-length 5 --cont-sliding-window 1  --recovery-flag --bn-flag 

flickr SAGE-Mean

cd vq_gnn_v1
python main_node.py --hidden-channels 128 --dropout 0 --lr 1e-3 --epochs 100 --batch-size 50000 --test-batch-size 0 --num-M 1024 --num-D 4 --grad-scale 1 1 --warm-up --momentum 0.1 --conv-type SAGE --dataset flickr --sampler-type cont --walk-length 5 --cont-sliding-window 1  --recovery-flag --bn-flag 

flickr GAT

cd vq_gnn_v1
python main_node.py --hidden-channels 128 --dropout 0 --lr 1e-3 --epochs 100 --batch-size 30000 --test-batch-size 0 --num-M 1024 --num-D 4 --grad-scale 1 1 --warm-up --momentum 0.1 --conv-type GAT --dataset flickr --sampler-type cont --walk-length 5 --cont-sliding-window 1  --recovery-flag --bn-flag 

Cite

If you find VQ-GNN useful, please cite our paper.

@misc{ding2021vqgnn,
      title={VQ-GNN: A Universal Framework to Scale up Graph Neural Networks using Vector Quantization}, 
      author={Mucong Ding and Kezhi Kong and Jingling Li and Chen Zhu and John P Dickerson and Furong Huang and Tom Goldstein},
      year={2021},
      eprint={2110.14363},
      archivePrefix={arXiv},
      primaryClass={cs.LG}
}