-
Notifications
You must be signed in to change notification settings - Fork 144
/
Copy pathutil.h
360 lines (289 loc) · 10.6 KB
/
util.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
/**
This file is part of sgm. (https://github.com/dhernandez0/sgm).
Copyright (c) 2016 Daniel Hernandez Juarez.
sgm is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
sgm is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with sgm. If not, see <http://www.gnu.org/licenses/>.
**/
#ifndef UTIL_H_
#define UTIL_H_
#include <iostream>
#include <dirent.h>
#include <stdio.h>
#define FERMI false
#define GPU_THREADS_PER_BLOCK_FERMI 256
#define GPU_THREADS_PER_BLOCK_MAXWELL 64
/* Defines related to GPU Architecture */
#if FERMI
#define GPU_THREADS_PER_BLOCK GPU_THREADS_PER_BLOCK_FERMI
#else
#define GPU_THREADS_PER_BLOCK GPU_THREADS_PER_BLOCK_MAXWELL
#endif
#define WARP_SIZE 32
static void CheckCudaErrorAux (const char *, unsigned, const char *, cudaError_t);
#define CUDA_CHECK_RETURN(value) CheckCudaErrorAux(__FILE__,__LINE__, #value, value)
/**
* Check the return value of the CUDA runtime API call and exit
* the application if the call has failed.
*/
static void CheckCudaErrorAux (const char *file, unsigned line, const char *statement, cudaError_t err) {
if (err == cudaSuccess)
return;
std::cerr << statement<<" returned " << cudaGetErrorString(err) << "("<<err<< ") at "<<file<<":"<<line << std::endl;
exit (1);
}
/*************************************
GPU Side defines (ASM instructions)
**************************************/
// output temporal carry in internal register
#define UADD__CARRY_OUT(c, a, b) \
asm volatile("add.cc.u32 %0, %1, %2;" : "=r"(c) : "r"(a) , "r"(b))
// add & output with temporal carry of internal register
#define UADD__IN_CARRY_OUT(c, a, b) \
asm volatile("addc.cc.u32 %0, %1, %2;" : "=r"(c) : "r"(a) , "r"(b))
// add with temporal carry of internal register
#define UADD__IN_CARRY(c, a, b) \
asm volatile("addc.u32 %0, %1, %2;" : "=r"(c) : "r"(a) , "r"(b))
// packing and unpacking: from uint64_t to uint2
#define V2S_B64(v,s) \
asm("mov.b64 %0, {%1,%2};" : "=l"(s) : "r"(v.x), "r"(v.y))
// packing and unpacking: from uint2 to uint64_t
#define S2V_B64(s,v) \
asm("mov.b64 {%0,%1}, %2;" : "=r"(v.x), "=r"(v.y) : "l"(s))
/*************************************
DEVICE side basic block primitives
**************************************/
#if FERMI
#define LDG(ptr) (* ptr)
#else
#define LDG(ptr) __ldg(ptr)
#endif
#if FERMI
__shared__ int interBuff[GPU_THREADS_PER_BLOCK];
__inline__ __device__ int __emulated_shfl(const int scalarValue, const uint32_t source_lane) {
const int warpIdx = threadIdx.x / WARP_SIZE;
const int laneIdx = threadIdx.x % WARP_SIZE;
volatile int *interShuffle = interBuff + (warpIdx * WARP_SIZE);
interShuffle[laneIdx] = scalarValue;
return(interShuffle[source_lane % WARP_SIZE]);
}
#endif
__inline__ __device__ int shfl_32(int scalarValue, const int lane) {
#if FERMI
return __emulated_shfl(scalarValue, (uint32_t)lane);
#else
return __shfl_sync(0xffffffff, scalarValue, lane);
#endif
}
__inline__ __device__ int shfl_up_32(int scalarValue, const int n) {
#if FERMI
int lane = threadIdx.x % WARP_SIZE;
lane -= n;
return shfl_32(scalarValue, lane);
#else
return __shfl_up_sync(0xffffffff, scalarValue, n);
#endif
}
__inline__ __device__ int shfl_down_32(int scalarValue, const int n) {
#if FERMI
int lane = threadIdx.x % WARP_SIZE;
lane += n;
return shfl_32(scalarValue, lane);
#else
return __shfl_down_sync(0xffffffff, scalarValue, n);
#endif
}
__inline__ __device__ int shfl_xor_32(int scalarValue, const int n) {
#if FERMI
int lane = threadIdx.x % WARP_SIZE;
lane = lane ^ n;
return shfl_32(scalarValue, lane);
#else
return __shfl_xor_sync(0xffffffff, scalarValue, n);
#endif
}
__device__ __forceinline__ uint32_t ld_gbl_ca(const __restrict__ uint32_t *addr) {
uint32_t return_value;
asm("ld.global.ca.u32 %0, [%1];" : "=r"(return_value) : "l"(addr));
return return_value;
}
__device__ __forceinline__ uint32_t ld_gbl_cs(const __restrict__ uint32_t *addr) {
uint32_t return_value;
asm("ld.global.cs.u32 %0, [%1];" : "=r"(return_value) : "l"(addr));
return return_value;
}
__device__ __forceinline__ void st_gbl_wt(const __restrict__ uint32_t *addr, const uint32_t value) {
asm("st.global.wt.u32 [%0], %1;" :: "l"(addr), "r"(value));
}
__device__ __forceinline__ void st_gbl_cs(const __restrict__ uint32_t *addr, const uint32_t value) {
asm("st.global.cs.u32 [%0], %1;" :: "l"(addr), "r"(value));
}
__device__ __forceinline__ uint32_t gpu_get_sm_idx(){
uint32_t smid;
asm volatile("mov.u32 %0, %%smid;" : "=r"(smid));
return(smid);
}
__device__ __forceinline__ void uint32_to_uchars(const uint32_t s, int *u1, int *u2, int *u3, int *u4) {
//*u1 = s & 0xff;
*u1 = __byte_perm(s, 0, 0x4440);
//*u2 = (s>>8) & 0xff;
*u2 = __byte_perm(s, 0, 0x4441);
//*u3 = (s>>16) & 0xff;
*u3 = __byte_perm(s, 0, 0x4442);
//*u4 = s>>24;
*u4 = __byte_perm(s, 0, 0x4443);
}
__device__ __forceinline__ uint32_t uchars_to_uint32(int u1, int u2, int u3, int u4) {
//return u1 | (u2<<8) | (u3<<16) | (u4<<24);
//return __byte_perm(u1, u2, 0x7740) + __byte_perm(u3, u4, 0x4077);
return u1 | (u2<<8) | __byte_perm(u3, u4, 0x4077);
}
__device__ __forceinline__ uint32_t uchar_to_uint32(int u1) {
return __byte_perm(u1, u1, 0x0);
}
__device__ __forceinline__ unsigned int vcmpgeu4(unsigned int a, unsigned int b) {
unsigned int r, c;
c = a-b;
asm ("prmt.b32 %0,%1,0,0xba98;" : "=r"(r) : "r"(c));// build mask from msbs
return r; // byte-wise unsigned gt-eq comparison with mask result
}
__device__ __forceinline__ unsigned int vminu4(unsigned int a, unsigned int b) {
unsigned int r, s;
s = vcmpgeu4 (b, a);// mask = 0xff if a >= b
r = a & s; // select a when b >= a
s = b & ~s; // select b when b < a
r = r | s; // combine byte selections
return r;
}
__device__ __forceinline__ void print_uchars(const char* str, const uint32_t s) {
int u1, u2, u3, u4;
uint32_to_uchars(s, &u1, &u2, &u3, &u4);
printf("%s: %d %d %d %d\n", str, u1, u2, u3, u4);
}
template<class T>
__device__ __forceinline__ int popcount(T n) {
#if CSCT or CSCT_RECOMPUTE
return __popc(n);
#else
return __popcll(n);
#endif
}
__inline__ __device__ uint8_t minu8_index4(int *min_idx, const uint8_t val1, const int dis, const uint8_t val2, const int dis2, const uint8_t val3, const int dis3, const uint8_t val4, const int dis4) {
int min_idx1 = dis;
uint8_t min1 = val1;
if(val1 > val2) {
min1 = val2;
min_idx1 = dis2;
}
int min_idx2 = dis3;
uint8_t min2 = val3;
if(val3 > val4) {
min2 = val4;
min_idx2 = dis4;
}
uint8_t minval = min1;
*min_idx = min_idx1;
if(min1 > min2) {
minval = min2;
*min_idx = min_idx2;
}
return minval;
}
__inline__ __device__ uint8_t minu8_index8(int *min_idx, const uint8_t val1, const int dis, const uint8_t val2, const int dis2, const uint8_t val3, const int dis3, const uint8_t val4, const int dis4, const uint8_t val5, const int dis5, const uint8_t val6, const int dis6, const uint8_t val7, const int dis7, const uint8_t val8, const int dis8) {
int min_idx1, min_idx2;
uint8_t minval1, minval2;
minval1 = minu8_index4(&min_idx1, val1, dis, val2, dis2, val3, dis3, val4, dis4);
minval2 = minu8_index4(&min_idx2, val5, dis5, val6, dis6, val7, dis7, val8, dis8);
*min_idx = min_idx1;
uint8_t minval = minval1;
if(minval1 > minval2) {
*min_idx = min_idx2;
minval = minval2;
}
return minval;
}
__inline__ __device__ int warpReduceMinIndex2(int *val, int idx) {
for(int d = 1; d < WARP_SIZE; d *= 2) {
int tmp = shfl_xor_32(*val, d);
int tmp_idx = shfl_xor_32(idx, d);
if(*val > tmp) {
*val = tmp;
idx = tmp_idx;
}
}
return idx;
}
__inline__ __device__ int warpReduceMinIndex(int val, int idx) {
for(int d = 1; d < WARP_SIZE; d *= 2) {
int tmp = shfl_xor_32(val, d);
int tmp_idx = shfl_xor_32(idx, d);
if(val > tmp) {
val = tmp;
idx = tmp_idx;
}
}
return idx;
}
__inline__ __device__ int warpReduceMin(int val) {
val = min(val, shfl_xor_32(val, 1));
val = min(val, shfl_xor_32(val, 2));
val = min(val, shfl_xor_32(val, 4));
val = min(val, shfl_xor_32(val, 8));
val = min(val, shfl_xor_32(val, 16));
return val;
}
__inline__ __device__ int blockReduceMin(int val) {
static __shared__ int shared[WARP_SIZE]; // Shared mem for WARP_SIZE partial sums
const int lane = threadIdx.x % WARP_SIZE;
const int wid = threadIdx.x / WARP_SIZE;
val = warpReduceMin(val); // Each warp performs partial reduction
if (lane==0) shared[wid]=val; // Write reduced value to shared memory
__syncthreads(); // Wait for all partial reductions
//read from shared memory only if that warp existed
val = (threadIdx.x < blockDim.x / warpSize) ? shared[lane] : INT_MAX;
if (wid==0) val = warpReduceMin(val); //Final reduce within first warp
return val;
}
__inline__ __device__ int blockReduceMinIndex(int val, int idx) {
static __shared__ int shared_val[WARP_SIZE]; // Shared mem for WARP_SIZE partial mins
static __shared__ int shared_idx[WARP_SIZE]; // Shared mem for WARP_SIZE indexes
const int lane = threadIdx.x % WARP_SIZE;
const int wid = threadIdx.x / WARP_SIZE;
idx = warpReduceMinIndex2(&val, idx); // Each warp performs partial reduction
if (lane==0) {
shared_val[wid]=val;
shared_idx[wid]=idx;
}
__syncthreads(); // Wait for all partial reductions
//read from shared memory only if that warp existed
val = (threadIdx.x < blockDim.x / WARP_SIZE) ? shared_val[lane] : INT_MAX;
idx = (threadIdx.x < blockDim.x / WARP_SIZE) ? shared_idx[lane] : INT_MAX;
if (wid==0) {
idx = warpReduceMinIndex2(&val, idx); //Final reduce within first warp
}
return idx;
}
__inline__ __device__ bool blockAny(bool local_condition) {
__shared__ bool conditions[WARP_SIZE];
const int lane = threadIdx.x % WARP_SIZE;
const int wid = threadIdx.x / WARP_SIZE;
local_condition = __any_sync(0xffffffff, local_condition); // Each warp performs __any
if (lane==0) {
conditions[wid]=local_condition;
}
__syncthreads(); // Wait for all partial __any
//read from shared memory only if that warp existed
local_condition = (threadIdx.x < blockDim.x / WARP_SIZE) ? conditions[lane] : false;
if (wid==0) {
local_condition = __any_sync(0xffffffff, local_condition); //Final __any within first warp
}
return local_condition;
}
#endif /* UTIL_H_ */