forked from valefras/italian_parliament_corpus
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy path1-create_dict.py
217 lines (184 loc) · 7.8 KB
/
1-create_dict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
import os
import argparse
import csv
import pandas as pd
from pandas import Index
from tqdm import tqdm
from utils import Dictionary, ordered_legs
def createLegDict(cam, path, confidence_cutoff=94):
"""
Create a dictionary of words and frequencies for a specific legislatura
:param cam: 0 for camera, 1 for senato
:param path: path to the folder containing the legislatura documents
:param confidence_cutoff: confidence cutoff for tesseract
:return: dictionary of words and frequencies for the legislatura
"""
# start_time = time.time()
final_dict = Dictionary()
if cam == 0 or (
cam == 1 and (path.split("/")[-1] in ["1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12"])
):
for day in os.listdir(path):
for doc in os.listdir(os.path.join(path, day)):
if doc.endswith("out"):
input_paths = os.listdir(os.path.join(path, day, doc))
page_list = [os.path.join(path, day, doc, x) for x in input_paths if x.endswith("tsv")]
single_doc_dict = createDocDict(page_list, confidence_cutoff)
final_dict.merge(single_doc_dict)
else:
for doc in os.listdir(path):
if doc.endswith("out"):
input_paths = os.listdir(os.path.join(path, doc))
page_list = [os.path.join(path, doc, x) for x in input_paths if x.endswith("tsv")]
single_doc_dict = createDocDict(page_list, confidence_cutoff)
final_dict.merge(single_doc_dict)
# print("--- %s seconds ---" % (time.time() - start_time))
return final_dict
def createDocDict(pages, confidence_cutoff):
"""
create a dictionary of words and frequencies for a single document
:param pages: list of paths to the pages of the document
:param confidence_cutoff: confidence cutoff for tesseract
:return: dictionary of words and frequencies for the document
"""
doc_dict = Dictionary()
for page in pages:
if os.path.getsize(page) == 0:
continue
dataf = pd.read_csv(page, sep="\t", quoting=csv.QUOTE_NONE, encoding="utf-8")
if (
dataf.shape[0] < 2
or len(dataf["text"]) == 0
# or not pd.api.types.is_string_dtype(dataf["text"])
):
continue
dataf_clean = dataf.dropna(subset=["text"])
dataf_clean_no_w = dataf_clean[dataf_clean["text"].astype(str).str.strip() != ""]
dataf_clean_no_w.reset_index(drop=True, inplace=True)
truncated_ix1 = dataf_clean_no_w[dataf_clean_no_w["text"].astype(str).str.endswith("-")].index
truncated_ix2 = Index([x + 1 for x in truncated_ix1], dtype="int64")
ix_to_drop = truncated_ix1.append(truncated_ix2)
dataf_clean_trunc = dataf_clean_no_w.drop(ix_to_drop, errors="ignore", axis=0)
# dataf_clean_trunc2 = dataf_clean_trunc1.drop(truncated_ix2, errors="ignore", axis=0)
# print(dataf_clean_trunc2.shape)
# count words in each page and return a dictionary of words and frequencies using vectorization
tokens = (
# first remove all the words with confidence < confidence_cutoff
dataf_clean_trunc.loc[dataf_clean_trunc["conf"] > confidence_cutoff, "text"].astype(str)
# then remove all punctuation and truncated words
# .str.findall(
# r"(?!.*-$)[A-Za-zÀ-ú'-]+|[!\"#$%&()*+,./:;<=>?@\[\\\]^_`{\|}~«»—]|\d+"
# )
.str.findall(r"(?!.*-$)[A-zÀ-ú'-]+|\d+")
# at this point we have a list of lists
# we remove all the entries that are not lists
# .apply(lambda x: x if isinstance(x, list) else None)
# .dropna()
)
# try:
tokens_unstacked = [word for sublist in tokens for word in sublist]
# except:
# filtered_data = tokens.apply(
# lambda x: x if not isinstance(x, list) else None
# ).dropna()
# print(filtered_data)
doc_dict.addMany(tokens_unstacked)
# print("--- %s seconds ---" % (time.time() - start_time))
return doc_dict
def createDictionaries(
data_folder,
output_folder,
cutoff_method,
cutoff_value, # fuzzy_span
):
"""
create dictionaries for a span of legilature
:param data_folder: path to the folder containing the data
:param output_folder: path to the folder where to save the dictionaries
:param cutoff_method: method with which to cut the dictionary (0 = keep top n, 1 = keep words with frequency > freq_cutoff)
:param cutoff_value: value to use for the cutoff
"""
# :param fuzzy_span: span of legislatures to merge (deprecated)
########### deprecated ###########
# def split(a, n):
# k, m = divmod(len(a), n)
# return (a[i * k + min(i, m) : (i + 1) * k + min(i + 1, m)] for i in range(n))
# subdivided_merged = list(split(ordered_legs, math.floor(len(ordered_legs) / fuzzy_span)))
# for sublist in tqdm(
# subdivided_merged,
# desc="Creating ordered_legs dictionary",
# total=len(subdivided_merged),
# leave=False,
# ):
##################################
os.makedirs(os.path.dirname(output_folder), exist_ok=True)
span_dict = Dictionary()
for leg in tqdm(
ordered_legs,
desc="Creating a dictionary for each legistatura",
total=len(ordered_legs),
leave=False,
):
camera_leg = leg[0]
senato_leg = leg[1:]
camera_leg_path = os.path.join(data_folder, "camera", camera_leg)
if os.path.exists(camera_leg_path):
camera_leg_dict = createLegDict(0, camera_leg_path, args.confidence_cutoff)
span_dict.merge(camera_leg_dict)
if senato_leg[0] is not None:
for senato in senato_leg:
senato_leg_path = os.path.join(data_folder, "senato", senato)
if os.path.exists(senato_leg_path):
senato_leg_dict = createLegDict(1, senato_leg_path, args.confidence_cutoff)
span_dict.merge(senato_leg_dict)
if cutoff_method == 0:
span_dict.keep_top_n(cutoff_value)
else:
span_dict.freq_cutoff(cutoff_value)
# span_dict.edit_punctuation()
span_dict.sort()
dict_name = leg[0]
span_dict.save(os.path.join(output_folder, dict_name + ".txt"))
if __name__ == "__main__":
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument("--data_path", type=str, default="data/", help="Path to the data to process.")
parser.add_argument("--output_path", type=str, default="data/", help="Where to output dictionaries.")
# parser.add_argument(
# "--fuzzy_span",
# type=int,
# default=1,
# help="Span of legislatures to merge (best split possible).",
# required=False,
# )
parser.add_argument(
"--confidence_cutoff",
type=int,
default=94,
help="Confidence cutoff for tesseract.",
required=False,
)
group = parser.add_mutually_exclusive_group()
group.add_argument(
"--freq_cutoff",
type=int,
default=10,
help="Frequency cutoff for words.",
required=False,
)
group.add_argument(
"--keep_top_n",
type=int,
default=100000,
help="Keep top n words by frequency.",
required=False,
)
args = parser.parse_args()
# method with which to cut the dictionary (0 = keep top n, 1 = keep words with frequency > freq_cutoff)
cut_method = 0 if args.keep_top_n else 1
cut_value = args.keep_top_n if args.keep_top_n else args.freq_cutoff
createDictionaries(
args.data_path,
args.output_path,
cut_method,
cut_value, # args.fuzzy_span
)