-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathquadtree.c
495 lines (411 loc) · 15.8 KB
/
quadtree.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <inttypes.h>
typedef struct QuadtreeNode // element al vectorului
{
unsigned char blue, green, red;
uint32_t area;
int32_t top_left, top_right;
int32_t bottom_left, bottom_right;
} __attribute__((packed)) QuadtreeNode;
typedef struct pixel // pixel
{
unsigned char red, green, blue;
} pixel;
typedef struct Node // nod al arborelui
{
unsigned char red, green, blue;
int size;
struct Node *top_left;
struct Node *top_right;
struct Node *bottom_left;
struct Node *bottom_right;
} Node;
// functie pentru medie
void average(pixel **p, unsigned int size, int x, int y, int64_t *red, int64_t *green, int64_t *blue)
{
int i, j;
*red = 0;
*green = 0;
*blue = 0;
for (i = x; i < x + size; i++)
for (j = y; j < y + size; j++)
{
*red += (int64_t)p[i][j].red;
*green += (int64_t)p[i][j].green;
*blue += (int64_t)p[i][j].blue;
}
(*red) /= (size * size);
(*green) /= (size * size);
(*blue) /= (size * size);
}
void init(Node *root) // functie pentru alocare de memorie pentru fii
{
root->top_right = (Node *)malloc(sizeof(Node));
root->top_left = (Node *)malloc(sizeof(Node));
root->bottom_left = (Node *)malloc(sizeof(Node));
root->bottom_right = (Node *)malloc(sizeof(Node));
}
// functie pentru trecerea datelor din matrice in arbore
void div_p(pixel **p, unsigned int size, int x, int y, int prag, Node *root, int *num_nodes, int *num_leafs)
{
int64_t i, j, scor = 0;
int64_t red, green, blue;
if (size)
{
average(p, size, x, y, &red, &green, &blue);
// se calculeaza scorul dupa formula
for (i = x; i < x + size; i++)
for (j = y; j < y + size; j++)
scor += (red - p[i][j].red) * (red - p[i][j].red) + (green - p[i][j].green) * (green - p[i][j].green) + (blue - p[i][j].blue) * (blue - p[i][j].blue);
scor = scor / (3 * size * size);
}
if (scor > prag) // se continua impartirea
{
init(root);
div_p(p, size / 2, x, y, prag, root->top_left, num_nodes, num_leafs);
div_p(p, size / 2, x, y + size / 2, prag, root->top_right, num_nodes, num_leafs);
div_p(p, size / 2, x + size / 2, y + size / 2, prag, root->bottom_right, num_nodes, num_leafs);
div_p(p, size / 2, x + size / 2, y, prag, root->bottom_left, num_nodes, num_leafs);
}
else // s-a terminat impartirea matricei si s-a ajuns la frunze
{
root->top_left = NULL;
root->top_right = NULL;
root->bottom_right = NULL;
root->bottom_left = NULL;
(*num_leafs)++;
}
// se completeaza datele pentru nodul curent
root->red = (unsigned char)red;
root->green = (unsigned char)green;
root->blue = (unsigned char)blue;
root->size = size * size;
(*num_nodes)++;
return;
}
// functie pentru completarea datelor din arbore in vector
void tree_to_vector(Node *root, QuadtreeNode *vector, int *num_elem, int32_t *x, int indice, int *indice_prev)
{
if (root == NULL) // nodul anterior este frunza
*x = -1;
else
{
vector[*num_elem].red = root->red;
vector[*num_elem].green = root->green;
vector[*num_elem].blue = root->blue;
vector[*num_elem].area = root->size;
(*num_elem)++;
tree_to_vector(root->top_left, vector, num_elem, x, *num_elem, indice_prev);
if (*x == -1) // nodul este frunza => se completeaza indicii cu -1
{
vector[*num_elem - 1].top_right = -1;
vector[*num_elem - 1].bottom_right = -1;
vector[*num_elem - 1].bottom_left = -1;
vector[*num_elem - 1].top_left = -1;
*x = 1;
}
else
vector[indice].top_left = *indice_prev; // nodul nu este frunza => se completeaza indicele cu indicele nodului vizitat anterior
tree_to_vector(root->top_right, vector, num_elem, x, *num_elem, indice_prev);
if (*x == -1) // nodul este frunza => se completeaza indicii cu -1
{
vector[*num_elem - 1].top_left = -1;
vector[*num_elem - 1].bottom_right = -1;
vector[*num_elem - 1].bottom_left = -1;
vector[*num_elem - 1].top_right = -1;
*x = 1;
}
else
vector[indice].top_right = *indice_prev; // nodul nu este frunza => se completeaza indicele cu indicele nodului vizitat anterior
tree_to_vector(root->bottom_right, vector, num_elem, x, *num_elem, indice_prev);
if (*x == -1) // nodul este frunza => se completeaza indicii cu -1
{
vector[*num_elem - 1].top_right = -1;
vector[*num_elem - 1].bottom_left = -1;
vector[*num_elem - 1].bottom_left = -1;
vector[*num_elem - 1].bottom_right = -1;
*x = 1;
}
else
vector[indice].bottom_right = *indice_prev; // nodul nu este frunza => se completeaza indicele cu indicele nodului vizitat anterior
tree_to_vector(root->bottom_left, vector, num_elem, x, *num_elem, indice_prev);
if (*x == -1) // nodul este frunza => se completeaza indicii cu -1
{
vector[*num_elem - 1].top_right = -1;
vector[*num_elem - 1].bottom_right = -1;
vector[*num_elem - 1].top_left = -1;
vector[*num_elem - 1].bottom_left = -1;
*x = 1;
}
else
vector[indice].bottom_left = *indice_prev; // nodul nu este frunza => se completeaza indicele cu indicele nodului vizitat anterior
*indice_prev = indice; // se retine indicele pentru a completa datele nodului anterior
}
}
// functie pentru completarea datellor din vector in arbore
void vector_to_tree(QuadtreeNode *vector, Node *root, int poz)
{
// se completeaza datele
root->red = vector[poz].red;
root->green = vector[poz].green;
root->blue = vector[poz].blue;
root->size = sqrt(vector[poz].area);
if (vector[poz].top_left != -1) // nodul nu este frunza
{
init(root);
// se continua parcurgerea
vector_to_tree(vector, root->top_left, vector[poz].top_left);
vector_to_tree(vector, root->top_right, vector[poz].top_right);
vector_to_tree(vector, root->bottom_left, vector[poz].bottom_left);
vector_to_tree(vector, root->bottom_right, vector[poz].bottom_right);
}
else // nodul este frunza
{
root->top_left = NULL;
root->top_right = NULL;
root->bottom_left = NULL;
root->bottom_right = NULL;
}
}
// functie pentru completarea datelor din arbore in matrice
void tree_to_matrix(Node *root, pixel **p, int size, int x, int y)
{
if (root->top_left != NULL) // nodul nu este frunza => se continua parcurgerea
{
tree_to_matrix(root->top_left, p, size / 2, x, y);
tree_to_matrix(root->top_right, p, size / 2, x, y + size / 2);
tree_to_matrix(root->bottom_right, p, size / 2, x + size / 2, y + size / 2);
tree_to_matrix(root->bottom_left, p, size / 2, x + size / 2, y);
}
else // nodul este frunza => se completeaza matricea
{
int i, j;
for (i = x; i < x + size; i++)
for (j = y; j < y + size; j++)
{
p[i][j].red = root->red;
p[i][j].green = root->green;
p[i][j].blue = root->blue;
}
}
}
// functie pentru oglindirea pe orizontala
void mirror_h(Node *root)
{
if (root != NULL)
{
Node *aux;
// se inverseaza primele doua noduri de pe nivel
aux = root->top_left;
root->top_left = root->top_right;
root->top_right = aux;
// se inverseaza ultimele doua noduri de pe nivel
aux = root->bottom_right;
root->bottom_right = root->bottom_left;
root->bottom_left = aux;
// se continua parcurgerea
mirror_h(root->top_left);
mirror_h(root->top_right);
mirror_h(root->bottom_right);
mirror_h(root->bottom_left);
}
else
return;
}
// functie pentru oglindirea pe orizontala
void mirror_v(Node *root)
{
if (root != NULL)
{
Node *aux;
// se inverseaza primul si ultimul nod de pe nivel
aux = root->top_left;
root->top_left = root->bottom_left;
root->bottom_left = aux;
// se inverseaza nodurile mijlocii de pe nivel
aux = root->top_right;
root->top_right = root->bottom_right;
root->bottom_right = aux;
// se continua parcurgerea
mirror_v(root->top_left);
mirror_v(root->top_right);
mirror_v(root->bottom_right);
mirror_v(root->bottom_left);
}
else
return;
}
// functie pentru eliberarea memoriei pentru arbore
void free_tree(Node *root)
{
if (root != NULL)
{
free_tree(root->top_left);
free_tree(root->top_right);
free_tree(root->bottom_right);
free_tree(root->bottom_left);
free(root);
}
else
return;
}
// functie pentru compresie
void task1(FILE *input, FILE *output, int prag)
{
char file_type[4], new_line;
unsigned int i, j, num_max;
int num_elem = 0, indice_prev = 0, num_nodes = 0, num_leafs = 0, x = 0;
unsigned int width, height;
fscanf(input, "%s%u%u%u", file_type, &width, &height, &num_max); // se citesc datele
fread(&new_line, sizeof(char), 1, input); // se citeste ultimul enter
Node *root = (Node *)malloc(sizeof(Node));
pixel **p = (pixel **)malloc(height * sizeof(pixel *));
for (i = 0; i < height; i++)
p[i] = (pixel *)malloc(width * sizeof(pixel));
// se citeste matricea de pixeli
for (i = 0; i < height; i++)
{
for (j = 0; j < width; j++)
{
fread(&p[i][j].red, sizeof(char), 1, input);
fread(&p[i][j].green, sizeof(char), 1, input);
fread(&p[i][j].blue, sizeof(char), 1, input);
}
}
div_p(p, width, 0, 0, prag, root, &num_nodes, &num_leafs); // se formeaza arborele
QuadtreeNode *vector = (QuadtreeNode *)malloc(num_nodes * sizeof(QuadtreeNode));
tree_to_vector(root, vector, &num_elem, &x, 0, &indice_prev); // se formeaza vectorul
fwrite(&num_leafs, sizeof(int), 1, output); // se scrie nr de frunze
fwrite(&num_nodes, sizeof(int), 1, output); // se scrie nr de noduri
fwrite(vector, sizeof(QuadtreeNode), num_nodes, output); // se scrie vectorul
// se elibereaza memoria
for (i = 0; i < height; i++)
free(p[i]);
free(p);
free(vector);
free_tree(root);
}
// functie pentru decompresie
void task2(FILE *input, FILE *output)
{
int num_nodes, num_leafs, i;
fread(&num_leafs, sizeof(int), 1, input); // se citeste nr de frunze
fread(&num_nodes, sizeof(int), 1, input); // se citeste nr de noduri
Node *root = (Node *)malloc(sizeof(Node));
QuadtreeNode *vector = (QuadtreeNode *)malloc(num_nodes * sizeof(QuadtreeNode));
for (i = 0; i < num_nodes; i++) // se citeste vectorul
{
fread(&(vector[i].blue), sizeof(char), 1, input);
fread(&(vector[i].green), sizeof(char), 1, input);
fread(&(vector[i].red), sizeof(char), 1, input);
fread(&(vector[i].area), sizeof(uint32_t), 1, input);
fread(&(vector[i].top_left), sizeof(int32_t), 1, input);
fread(&(vector[i].top_right), sizeof(int32_t), 1, input);
fread(&(vector[i].bottom_left), sizeof(int32_t), 1, input);
fread(&(vector[i].bottom_right), sizeof(int32_t), 1, input);
}
unsigned int width = sqrt(vector[0].area), height = sqrt(vector[0].area);
vector_to_tree(vector, root, 0); // se construieste arborele
pixel **p = (pixel **)malloc(height * sizeof(pixel *));
for (i = 0; i < height; i++)
p[i] = (pixel *)malloc(width * sizeof(pixel));
tree_to_matrix(root, p, width, 0, 0); // se construieste matricea
char file_type[4] = "P6\n", num_max[5] = "255\n";
fwrite(file_type, sizeof(char), 3, output); // se scrie tipul fisierului
fprintf(output, "%d %d\n", width, height); // se scrie dimensiunea
fwrite(num_max, sizeof(char), 4, output); // se scrie dimensiunea maxima a unei culori din pixel
for (i = 0; i < height; i++)
fwrite(p[i], sizeof(pixel), width, output); // se scrie matricea de pixeli
// se elibereaza memoria
for (i = 0; i < height; i++)
free(p[i]);
free(p);
free(vector);
free_tree(root);
}
// functie pentru oglindire
void task3(FILE *input, FILE *output, char type, int prag)
{
char file_type[11], new_line;
unsigned int width, height, i, j, num_max;
int num_nodes = 0, num_leafs = 0;
fscanf(input, "%s%u%u%u", file_type, &width, &height, &num_max); // se citesc datele
fread(&new_line, sizeof(char), 1, input); // se citeste ultimul enter
Node *root = (Node *)malloc(sizeof(Node));
pixel **p = (pixel **)malloc(height * sizeof(pixel *));
for (i = 0; i < height; i++)
p[i] = (pixel *)malloc(width * sizeof(pixel));
// se citeste matricea de pixeli
for (i = 0; i < height; i++)
{
for (j = 0; j < width; j++)
{
fread(&p[i][j].red, sizeof(char), 1, input);
fread(&p[i][j].green, sizeof(char), 1, input);
fread(&p[i][j].blue, sizeof(char), 1, input);
}
}
div_p(p, width, 0, 0, prag, root, &num_nodes, &num_leafs); // se formeaza arborele
if (type == 'v')
mirror_v(root); // arborele se oglindeste pe verticala
if (type == 'h')
mirror_h(root); // arborele se oglindeste pe orizontala
tree_to_matrix(root, p, width, 0, 0); // se formeaza noua matrice
char num_max_c[5] = "255\n", file_type2[4] = "P6\n";
fwrite(file_type2, sizeof(char), 3, output); // se scrie tipul fisierului
fprintf(output, "%d %d\n", width, height); // se scrie dimensiunea
fwrite(num_max_c, sizeof(char), 4, output); // se scrie dimensiunea maxima a unei culori din pixel
for (i = 0; i < height; i++)
fwrite(p[i], sizeof(pixel), width, output); // se scrie matricea de pixeli
// se elibereaza memoria
for (i = 0; i < height; i++)
free(p[i]);
free(p);
free_tree(root);
}
int main(int argc, char *argv[])
{
char type, infile_name[30], outfile_name[30];
int i, prag;
if (strcmp(argv[1], "-c") == 0)
{
prag = 0;
for (i = 0; i < strlen(argv[2]); i++)
prag = prag * 10 + (argv[2][i] - '0'); // se afla pragul
strcpy(infile_name, argv[3]);
strcpy(outfile_name, argv[4]);
FILE *input = fopen(infile_name, "rb"); // se deschide fisierul de intrare
FILE *output = fopen(outfile_name, "wb"); // se deschide fisierul de iesire
task1(input, output, prag);
fclose(input); // se inchide fisierul de intrare
fclose(output); // se inchide fisierul de iesire
}
if (strcmp(argv[1], "-d") == 0)
{
strcpy(infile_name, argv[2]);
strcpy(outfile_name, argv[3]);
FILE *input = fopen(infile_name, "rb"); // se deschide fisierul de intrare
FILE *output = fopen(outfile_name, "wb"); // se deschide fisierul de iesire
task2(input, output);
fclose(input); // se inchide fisierul de intrare
fclose(output); // se inchide fisierul de iesire
}
if (strcmp(argv[1], "-m") == 0)
{
strcpy(infile_name, argv[4]);
strcpy(outfile_name, argv[5]);
type = argv[2][0];
prag = 0;
for (i = 0; i < strlen(argv[3]); i++)
prag = prag * 10 + (argv[3][i] - '0'); // se afla pragul
FILE *input = fopen(infile_name, "rb"); // se deschide fisierul de intrare
FILE *output = fopen(outfile_name, "wb"); // se deschide fisierul de iesire
task3(input, output, type, prag);
fclose(input); // se inchide fisierul de intrare
fclose(output); // se inchide fisierul de iesire
}
return 0;
}