-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathDemonstration_of_papers_DNN.m
231 lines (165 loc) · 8.44 KB
/
Demonstration_of_papers_DNN.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
% Power of Deep Learning for Channel Estimation and Signal Detection in OFDM Systems
% SNR represents Es/N0, Es/N0 = Eb/N0 * log2(M)
% For SNR, the power of pilot is ignored when calculating the varience of
% noise and the pilots suffer from the noise on equal level with data
% Power is balanced since IFFT/FFT is applied
% InsertDCNull is true and the effect caused by DCNull is considered in the
% SNR_OFDM, which is adjusted to be SNR + 10 * log(Num_of_subcarriers_used
% / Num_of_FFT)
% h_channel is different for each frame and stored in H, or read from h_set
SNR_Range = 5:25;
%h_set = [];
BER_over_SNR = zeros(length(SNR_Range), 1);
SER_over_SNR = zeros(length(SNR_Range), 1);
DNN_BER_over_SNR = zeros(length(SNR_Range), 1);
DNN_SER_over_SNR = zeros(length(SNR_Range), 1);
% Import Deep Neuron Network
load('DNN_Trained.mat');
%load('DNNInfo.mat')
for SNR = SNR_Range
Baseband_bandwidth = 20e6;
M = 4; % QPSK
k = log2(M);
Num_of_subcarriers = 63; %126
Num_of_FFT = Num_of_subcarriers + 1;
length_of_CP = 16;
Num_of_frame = 10000;
Num_of_symbols = 1;
Num_of_pilot = 1;
Frame_size = Num_of_symbols + Num_of_pilot;
Pilot_interval = Frame_size / Num_of_pilot;
Pilot_starting_location = 1;
length_of_symbol = Num_of_FFT + length_of_CP;
Num_of_QPSK_symbols = Num_of_subcarriers * Num_of_symbols * Num_of_frame;
Num_of_bits = Num_of_QPSK_symbols * k;
Num_of_QPSK_symbols_DNN = 8 * Num_of_symbols * Num_of_frame;
Num_of_bits_DNN = Num_of_QPSK_symbols_DNN * k;
numErrs_sym = zeros(Num_of_frame, 1);
SER_in_frame = zeros(Num_of_frame, 1);
numErrs_bit = zeros(Num_of_frame, 1);
BER_in_frame = zeros(Num_of_frame, 1);
DNN_numErrs_sym = zeros(Num_of_frame, 1);
DNN_SER_in_frame = zeros(Num_of_frame, 1);
DNN_numErrs_bit = zeros(Num_of_frame, 1);
DNN_BER_in_frame = zeros(Num_of_frame, 1);
Rayleigh_h = zeros(Num_of_frame * Frame_size * length_of_symbol, 1);
Multipath_h = zeros(Num_of_frame * Frame_size * length_of_symbol, 1);
for Frame = 1:Num_of_frame
% Data generation
N = Num_of_subcarriers * Num_of_symbols;
data = randi([0 1], N, k);
Data = reshape(data, [], 1);
dataSym = bi2de(data);
% QPSK modulator
QPSK_symbol = QPSK_Modualtor(dataSym);
QPSK_signal = reshape(QPSK_symbol, Num_of_subcarriers, Num_of_symbols);
% Pilot inserted
Pilot_value = 1 - 1j;
Pilot_location = Pilot_starting_location : Pilot_interval : Frame_size;
Num_of_Pilot_per_Frame = length(Pilot_location) * Num_of_subcarriers;
data_location = 1 : Frame_size;
data_location(Pilot_location(:)) = [];
data_in_IFFT = zeros(Num_of_FFT - 1, Frame_size);
data_in_IFFT(:, Pilot_location(:)) = Pilot_value;
data_in_IFFT(:, data_location(:)) = QPSK_signal;
data_in_IFFT = [zeros(1, Frame_size); data_in_IFFT];
% OFDM Transmitter
Transmitted_signal = OFDM_Transmitter(data_in_IFFT, Num_of_FFT, length_of_CP);
% Channel
% AWGN Channel
%Signal_power = sum(power(abs(Transmitted_signal), 2));
%Pilot_power = power(abs(Pilot_value), 2) * Num_of_Pilot_per_Frame;
Data_power = sum(power(abs(QPSK_symbol), 2)) / (length(QPSK_symbol));
SNR_OFDM = SNR + 10 * log10((Num_of_subcarriers / Num_of_FFT));
SNR_OFDM_HEX = 10 ^ (SNR_OFDM / 10);
Noise_power = Data_power / SNR_OFDM_HEX;
Nvariance = sqrt(Noise_power/2); % QPSK has two paths of signal
n = Nvariance * (randn(length(Transmitted_signal), 1) + 1j * randn(length(Transmitted_signal), 1)); % Noise generation
AWGN_Signal = Transmitted_signal + n;
%channel = comm.AWGNChannel('NoiseMethod','Variance','VarianceSource','Input port');
%powerDB = 10*log10(var(Transmitted_signal));
%noiseVar = 10.^(0.1*(powerDB - SNR));
%Signal_1 = channel(Transmitted_signal,noiseVar);
%n_1 = Signal_1 - Transmitted_signal;
% Rayleigh Channel
Rayleigh_h_channel_OFDM_symbol = (1 / sqrt(2)) * randn(length_of_symbol, 1) + (1 / sqrt(2)) * 1j * randn(length_of_symbol, 1); % Rayleigh channel coff
Rayleigh_h_channel = repmat(Rayleigh_h_channel_OFDM_symbol, Frame_size, 1);
Rayleigh_Fading_Signal = Rayleigh_h_channel .* Transmitted_signal + n;
Rayleigh_h(((Frame - 1) * Frame_size * length_of_symbol) + 1 : Frame * Frame_size * length_of_symbol, 1) = Rayleigh_h_channel;
Channel_signal_when_h_is_known = Rayleigh_Fading_Signal ./ Rayleigh_h_channel;
% Multipath Rayleigh Fading Channel
Multipath_Fading_h_channel_OFDM_symbol = ((randn + 1j * randn) / sqrt(2)) * ones(length_of_symbol, 1);
Multipath_Fading_h_channel = repmat(Multipath_Fading_h_channel_OFDM_symbol, Frame_size, 1);
Multipath_Fading_Signal = Multipath_Fading_h_channel .* Transmitted_signal + n;
Multipath_h(((Frame - 1) * Frame_size * length_of_symbol) + 1 : Frame * Frame_size * length_of_symbol, 1) = Multipath_Fading_h_channel;
Multitap_h = [(randn + 1j * randn);...
(randn + 1j * randn) / 2;...
(randn + 1j * randn) / 4;...
(randn + 1j * randn) / 8;...
(randn + 1j * randn) / 16] / (1.9375 * sqrt(pi/2));
% linear convolution
Multitap_Channel_Signal = conv(Transmitted_signal, Multitap_h);
% circular convolution
%Multitap_Channel_Signal = cconv(Transmitted_signal, Multitap_h, length(Transmitted_signal));
Multitap_Channel_Signal = Multitap_Channel_Signal(1 : length(Transmitted_signal)) + n;
% OFDM Receiver
[Unrecovered_signal, Unrecovered_signal_when_h_is_known] = OFDM_Receiver(Multitap_Channel_Signal, Num_of_FFT, length_of_CP, length_of_symbol, Channel_signal_when_h_is_known);
% Channel estimation
% Origin Received Signal
%Received_data = Unrecovered_signal(2:end, data_location(:));
% Perfect knowledge on Channel
Received_data_Perfect_knowledge = Unrecovered_signal_when_h_is_known(2:end, data_location(:));
% Zero-forcing
Received_pilot = Unrecovered_signal(:, Pilot_location(:));
H_LS = Received_pilot ./ Pilot_value;
Received_Signal_ZF = Unrecovered_signal(:, data_location(:)) ./ H_LS;
Received_data_ZF = Received_Signal_ZF(2:end, :);
% MMSE
% L = length_of_CP; change it to 0 and have a test, then compare it with L and ZF
%H_MMSE_L_0 = MMSE_Uniform_PDP(0, Num_of_FFT, 0, SNR, true, H_LS, H_LS); % Single tap channel
%H_MMSE_L_length_of_CP = MMSE_Uniform_PDP(length_of_CP, Num_of_FFT, 0, SNR, true, H_LS, H_LS);
H_MMSE_h = MMSE_Channel_Tap_Block_Pilot_Demo_1(Received_pilot, Pilot_value, Num_of_FFT, Frame_size, SNR, Multitap_h');
H_MMSE = H_MMSE_h;
Received_Signal_MMSE = Unrecovered_signal ./ H_MMSE;
Received_data_MMSE = Received_Signal_MMSE(2:end, data_location(:));
% Deep learning
% Detect 8 QPSK symbols only
[DNN_feature_signal, ~, ~] = Extract_Feature_OFDM(Unrecovered_signal, dataSym(1:2), M, QPSK_signal(1:8));
Received_data_DNN = predict(DNN_Trained, DNN_feature_signal);
Received_data_DNN = transpose(Received_data_DNN);
DNN_Received_data = Received_data_DNN(1:2:end, :) + 1j * Received_data_DNN(2:2:end, :);
Received_data = Received_data_MMSE;
%Received_data_ZF Received_data_MMSE Received_data_DNN
%scatterplot(Received_data(:, 1))
% Checking
Symbol_noise = Received_data - QPSK_signal;
Symbol_noise = reshape(Symbol_noise, [], 1);
Noise_power_Symbol = sum(power(abs(Symbol_noise), 2), 1)/ size(Symbol_noise, 1);
SNR_HEX_Symbol = 2 / Noise_power_Symbol;
SNR_Symbol = 10 * log10(SNR_HEX_Symbol);
% QPSK demodulator
dataSym_Rx = QPSK_Demodulator(Received_data);
dataSym_Received = de2bi(dataSym_Rx, 2);
Data_Received = reshape(dataSym_Received, [], 1);
DNN_dataSym_Rx = QPSK_Demodulator(DNN_Received_data);
DNN_dataSym_Received = de2bi(DNN_dataSym_Rx, 2);
DNN_Data_Received = reshape(DNN_dataSym_Received, [], 1);
% BER calculation in each frame
numErrs_sym(Frame, 1) = sum(sum(round(dataSym) ~= round(dataSym_Rx)));
SER_in_frame(Frame, 1) = numErrs_sym(Frame, 1) / length(dataSym);
numErrs_bit(Frame, 1) = sum(sum(round(Data) ~= round(Data_Received)));
BER_in_frame(Frame, 1) = numErrs_bit(Frame, 1) / length(Data);
% DNN BER calculation in each frame
DNN_numErrs_sym(Frame, 1) = sum(sum(round(dataSym(1:8)) ~= round(DNN_dataSym_Rx)));
DNN_SER_in_frame(Frame, 1) = DNN_numErrs_sym(Frame, 1) / length(DNN_dataSym_Rx);
DNN_numErrs_bit(Frame, 1) = sum(sum(round(reshape(de2bi(dataSym(1:8), 2),[],1)) ~= round(DNN_Data_Received)));
DNN_BER_in_frame(Frame, 1) = DNN_numErrs_bit(Frame, 1) / length(DNN_Data_Received);
end
% BER calculation
BER = sum(numErrs_bit, 1) / Num_of_bits;
SER = sum(numErrs_sym, 1) / Num_of_QPSK_symbols;
BER_over_SNR(SNR + 1, 1) = BER;
SER_over_SNR(SNR + 1, 1) = SER;
DNN_BER_over_SNR(SNR + 1, 1) = sum(DNN_numErrs_bit, 1) / Num_of_bits_DNN;
DNN_SER_over_SNR(SNR + 1, 1) = sum(DNN_numErrs_sym, 1) / Num_of_QPSK_symbols_DNN;
end