-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenerate_summary.py
211 lines (184 loc) · 10 KB
/
generate_summary.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Wed Dec 9 23:24:18 2020
"""
import os # to communicate with operation system
import os.path as path
import torch
import numpy as np
from tqdm import tqdm
from numpy import array
from numpy import argmax
from utils import tensor_from_data, tensor_from_weight, _eval_Fmeasure, _eval_ndcg_scores
from data_loader import get_data_gold
from model import GATES
def generate_summary(ds_name, test_adjs, test_facts, test_labels, pred_dict, entity_dict, pred2ix_size, pred_emb_dim, ent_emb_dim, device, use_epoch, db_dir, \
dropout, entity2ix_size, hidden_layers, nheads, word_emb, word_emb_calc, topk, file_n, concat_model, print_to, weighted_edges_method):
directory = path.join("data/output_summaries", ds_name)
if not path.exists(directory):
os.makedirs(directory)
favg_top_all = []
ndcg_scores_all = []
weighted_adjacency_matrix=False
if weighted_edges_method=="tf-idf":
weighted_adjacency_matrix = True
for num in tqdm(range(5)):
favg_top_list = []
ndcg_scores = []
CHECK_DIR = path.join("models", "gates_checkpoint-{}-{}-{}".format(ds_name, topk, num))
gates = GATES(pred2ix_size, entity2ix_size, pred_emb_dim, ent_emb_dim, device, dropout, hidden_layers, nheads, weighted_adjacency_matrix)
#print(path.join(CHECK_DIR, "checkpoint_epoch_{}.pt".format(use_epoch[num])))
checkpoint = torch.load(path.join(CHECK_DIR, "checkpoint_epoch_{}.pt".format(use_epoch[num])))
gates.load_state_dict(checkpoint["model_state_dict"])
gates.to(device)
adj = test_adjs[num]
edesc = test_facts[num]
label = test_labels[num]
gates.eval()
with torch.no_grad():
for i in range(len(edesc)):
eid = edesc[i][0][0]
pred_tensor, obj_tensor = tensor_from_data(concat_model, entity_dict, pred_dict, edesc[i], word_emb, word_emb_calc)
input_tensor = [pred_tensor.to(device), obj_tensor.to(device)]
target_tensor = tensor_from_weight(len(edesc[i]), edesc[i], label[i]).to(device)
output_tensor = gates(input_tensor, adj[i])
output_tensor = output_tensor.view(1, -1).cpu()
target_tensor = target_tensor.view(1, -1).cpu()
(label_top_scores, label_top) = torch.topk(target_tensor, topk)
(output_top_scores, output_top) = torch.topk(output_tensor, topk)
(output_rank_scores, output_rank) = torch.topk(output_tensor, len(edesc[i]))
if not path.exists(path.join(directory, "{}".format(eid))):
os.makedirs(path.join(directory, "{}".format(eid)))
writer(db_dir, eid, directory, "top{}".format(topk), output_top)
writer(db_dir, eid, directory, "rank", output_rank)
gold_list_top = get_data_gold(db_dir, eid, topk, file_n)
top_list_output_top = output_top.squeeze(0).numpy().tolist()
all_list_output_top = output_rank.squeeze(0).numpy().tolist()
favg_top = _eval_Fmeasure(top_list_output_top, gold_list_top)
favg_top_list.append(favg_top)
favg_top_all.append(favg_top)
ndcg_score = _eval_ndcg_scores(all_list_output_top, gold_list_top)
ndcg_scores.append(ndcg_score)
ndcg_scores_all.append(ndcg_score)
test_favg_top = np.mean(favg_top_list)
print('top {} of {} testing fold %d:'.format(topk, ds_name) % num, test_favg_top, np.average(ndcg_scores))
test_favg_top_all = np.mean(favg_top_all)
print("### Single Score ###")
#if ds_name=='faces':
print("dataset: {}".format(ds_name))
print("############################################")
print('Results{}@{}: F-measure={}, NDCG Score={}'.format(ds_name, topk, test_favg_top_all, np.average(ndcg_scores_all)))
print("#######################################")
print("\n")
if ds_name=="faces":
with open(print_to, 'a') as f:
f.write("Results({}@top{})-single score: F-measure={}, NDCG Score={}\n".format(ds_name, topk, test_favg_top_all, np.mean(ndcg_scores_all)))
if ds_name=="lmdb" and topk==10:
os.system('java -jar evaluation/esummeval_v1.2.jar data/ESBM_benchmark_v1.2/ data/output_summaries/ > {}'.format(print_to))
os.system('java -jar evaluation/esummeval_v1.2.jar data/ESBM_benchmark_v1.2/ data/data/output_summaries/')
def ensembled_generating_summary(ds_name, test_adjs, test_facts, test_labels, pred_dict, entity_dict, pred2ix_size, pred_emb_dim, ent_emb_dim, device, use_epoch, db_dir, \
dropout, entity2ix_size, hidden_layers, nheads, word_emb, word_emb_calc, topk, file_n, concat_model, print_to, weighted_edges_method):
directory = path.join("data/output_summaries_ensembled", ds_name)
if not path.exists(directory):
os.makedirs(directory)
favg_top_all = []
ndcg_scores_all = []
#load models
models = []
weighted_adjacency_matrix=False
if weighted_edges_method=="tf-idf":
weighted_adjacency_matrix = True
for num in tqdm(range(5)):
CHECK_DIR = path.join("models", "gates_checkpoint-{}-{}-{}".format(ds_name, topk, num))
gates = GATES(pred2ix_size, entity2ix_size, pred_emb_dim, ent_emb_dim, device, dropout, hidden_layers, nheads, weighted_adjacency_matrix)
checkpoint = torch.load(path.join(CHECK_DIR, "checkpoint_epoch_{}.pt".format(use_epoch[num])))
gates.load_state_dict(checkpoint["model_state_dict"])
gates.to(device)
models.append(gates)
for num in tqdm(range(5)):
print("Fold", num)
favg_top_list = []
ndcg_scores = []
adj = test_adjs[num]
edesc = test_facts[num]
label = test_labels[num]
with torch.no_grad():
for i in range(len(edesc)):
eid = edesc[i][0][0]
pred_tensor, obj_tensor = tensor_from_data(concat_model, entity_dict, pred_dict, edesc[i], word_emb, word_emb_calc)
input_tensor = [pred_tensor.to(device), obj_tensor.to(device)]
target_tensor = tensor_from_weight(len(edesc[i]), edesc[i], label[i]).to(device)
output_tensor = evaluate_n_members(models, num, input_tensor, adj[i])
output_tensor = output_tensor.view(1, -1).cpu()
target_tensor = target_tensor.view(1, -1).cpu()
(label_top_scores, label_top) = torch.topk(target_tensor, topk)
(output_top_scores, output_top) = torch.topk(output_tensor, topk)
(output_rank_scores, output_rank) = torch.topk(output_tensor, len(edesc[i]))
if not path.exists(path.join(directory, "{}".format(eid))):
os.makedirs(path.join(directory, "{}".format(eid)))
writer(db_dir, eid, directory, "top{}".format(topk), output_top)
writer(db_dir, eid, directory, "rank", output_rank)
gold_list_top = get_data_gold(db_dir, eid, topk, file_n)
top_list_output_top = output_top.squeeze(0).numpy().tolist()
all_list_output_top = output_rank.squeeze(0).numpy().tolist()
favg_top = _eval_Fmeasure(top_list_output_top, gold_list_top)
favg_top_list.append(favg_top)
favg_top_all.append(favg_top)
ndcg_score = _eval_ndcg_scores(all_list_output_top, gold_list_top)
ndcg_scores.append(ndcg_score)
ndcg_scores_all.append(ndcg_score)
test_favg_top = np.mean(favg_top_list)
print('top {} of {} testing fold %d:'.format(topk, ds_name) % num, test_favg_top, np.average(ndcg_scores))
test_favg_top_all = np.mean(favg_top_all)
print("\n")
print("### Ensembled score ###")
#if ds_name=='faces':
print("dataset: {}".format(ds_name))
print("############################################")
print('Results{}@{}: F-measure={}, NDCG Score={}'.format(ds_name, topk, test_favg_top_all, np.average(ndcg_scores_all)))
print("#######################################")
print("\n")
if ds_name=="faces":
with open(print_to, 'a') as f:
f.write("Results({}@top{})-ensembled score: F-measure={}, NDCG Score={}\n".format(ds_name, topk, test_favg_top_all, np.mean(ndcg_scores_all)))
if ds_name=="lmdb" and topk==10:
os.system('java -jar evaluation/esummeval_v1.2.jar data/ESBM_benchmark_v1.2/ data/output_summaries_ensembled/ > {}'.format("model-testing-dbpedia-lmdb-ensembled.txt"))
os.system('java -jar evaluation/esummeval_v1.2.jar data/ESBM_benchmark_v1.2/ data/output_summaries_ensembled/')
# evaluate a specific number of members in an ensemble
def evaluate_n_members(members, fold, input_tensor, adj):
if fold==4:
subset = [members[0], members[4]]
else:
subset = [members[fold], members[fold+1]]
yhat = ensemble_predictions(subset, input_tensor, adj)
return yhat
# make an ensemble prediction for multi-class classification
def ensemble_predictions(members, input_tensor, adj):
# make predictions
yhats = torch.stack([model(input_tensor, adj) for model in members])
result = torch.sum(yhats, axis=0)
return result
def writer(db_dir, eid, directory, top_or_rank, output):
with open(path.join(db_dir,
"{}".format(eid),
"{}_desc.nt".format(eid)),
encoding="utf8") as fin, \
open(path.join(directory,
"{}".format(eid),
"{}_{}.nt".format(eid, top_or_rank)),
"w", encoding="utf8") as fout:
if top_or_rank == "top5" or top_or_rank == "top10":
top_list = output.squeeze(0).numpy().tolist()
for t_num, triple in enumerate(fin):
if t_num in top_list:
fout.write(triple)
elif top_or_rank == "rank":
rank_list = output.squeeze(0).numpy().tolist()
triples = [triple for _, triple in enumerate(fin)]
for rank in rank_list:
try:
fout.write(triples[rank])
except:
pass
return