-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathmain.py
134 lines (120 loc) · 9.07 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
# -----------------------------------------------------------------------------
# MIT License
#
# Copyright (c) 2024 Ontolearn Team
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
# -----------------------------------------------------------------------------
from ontolearn.executor import execute
from argparse import ArgumentParser
def get_default_arguments(description=None):
parser = ArgumentParser()
parser.add_argument("--model", type=str, default="celoe", choices=["celoe", "ocel", "evolearner", "nces"],
help="Available concept learning models.")
# Knowledge graph related arguments
parser.add_argument("--knowledge_base_path", type=str, default="KGs/Family/family-benchmark_rich_background.owl",
help="Path to the knowledge base/ontology. This file contains '.owl' extension,"
"e.g. 'some/path/kb.owl'")
parser.add_argument("--sparql_endpoint", type=str, default=None,
help="An endpoint of a triple store, e.g. 'http://localhost:3030/family/sparql'. ")
parser.add_argument("--path_of_embeddings", type=str,
default='NCESData/family/embeddings/ConEx_entity_embeddings.csv',
help="Path to knowledge base embeddings. Some models like NCES require this,"
"e.g. 'some/path/kb_embeddings.csv'")
parser.add_argument("--save", action="store_true", help="save the hypothesis?")
# Common model arguments
parser.add_argument("--path_learning_problem", type=str, default='examples/uncle_lp2.json',
help="Path to a .json file that contains 2 properties 'positive_examples' and "
"'negative_examples'. Each of this properties should contain the IRIs of the respective"
"instances. e.g. 'some/path/lp.json'")
parser.add_argument("--quality_metric", type=str, default='f1',
choices=["f1", "accuracy", "recall", "precision", "weighted_accuracy"],
help="Quality metric.")
parser.add_argument("--max_runtime", type=int, default=5, help="Maximum runtime.")
# CELOE, OCEL and Evolearner only
parser.add_argument('--terminate_on_goal', type=bool, default=True, help="Terminate when finding concept of quality"
"1.0?")
parser.add_argument("--use_card_restrictions", type=bool, default=True,
help="Use cardinality restrictions for object properties?")
parser.add_argument("--use_inverse", type=bool, default=True, help="Use inverse.")
parser.add_argument("--card_limit", type=int, default=10, help="Cardinality limit for object properties.")
parser.add_argument("--max_nr_splits", type=int, default=12, help="Maximum number of splits.")
# CELOE and OCEL only
parser.add_argument("--max_results", type=int, default=10, help="Maximum results to find (not to show)")
parser.add_argument("--iter_bound", type=int, default=10_000, help="Iterations bound.")
parser.add_argument("--max_num_of_concepts_tested", type=int, default=10_000,
help="Maximum number of concepts tested.")
parser.add_argument("--best_only", type=bool, default=True, help="Best results only?")
parser.add_argument("--calculate_min_max", type=bool, default=True, help="Only for statistical purpose.")
parser.add_argument("--gain_bonus_factor", type=float, default=0.3,
help="Factor that weighs the increase in quality compared to the parent node.")
parser.add_argument("--expansion_penalty_factor", type=float, default=0.1,
help="The value that is subtracted from the heuristic for each horizontal expansion of this")
parser.add_argument("--max_child_length", type=int, default=10, help="Maximum child length")
parser.add_argument("--use_negation", type=bool, default=True, help="Use negation?")
parser.add_argument("--use_all_constructor", type=bool, default=True, help="Use all constructors?")
parser.add_argument("--use_numeric_datatypes", type=bool, default=True, help="Use numeric data types?")
parser.add_argument("--use_time_datatypes", type=bool, default=True, help="Use time datatypes?")
parser.add_argument("--use_boolean_datatype", type=bool, default=True, help="Use boolean datatypes?")
# CELOE only
parser.add_argument("--start_node_bonus", type=float, default=0.1, help="Special value added to the root node.")
parser.add_argument("--node_refinement_penalty", type=float, default=0.001, help="Node refinement penalty.")
# EvoLearner Only
parser.add_argument("--use_data_properties", type=bool, default=True, help="Use data properties?")
parser.add_argument("--tournament_size", type=int, default=7, help="Tournament size.")
parser.add_argument("--population_size", type=int, default=800, help="Population size.")
parser.add_argument("--num_generations", type=int, default=200, help="Number of generations.")
parser.add_argument("--height_limit", type=int, default=17, help="Height limit.")
parser.add_argument("--gain", type=int, default=2048, help="Gain.")
parser.add_argument("--penalty", type=int, default=1, help="Penalty.")
parser.add_argument("--max_t", type=int, default=2, help="Number of paths.")
parser.add_argument("--jump_pr", type=float, default=0.5, help="Probability to explore paths of length 2.")
parser.add_argument("--crossover_pr", type=float, default=0.9, help="Crossover probability.")
parser.add_argument("--mutation_pr", type=float, default=0.1, help="Mutation probability")
parser.add_argument("--elitism", type=bool, default=False, help="Elitism.")
parser.add_argument("--elite_size", type=float, default=0.1, help="Elite size")
parser.add_argument("--min_height", type=int, default=1, help="Minimum height of trees")
parser.add_argument("--max_height", type=int, default=3, help="Maximum height of trees")
parser.add_argument("--init_method_type", type=str, default="RAMPED_HALF_HALF",
help="Random initialization method.", choices=["GROW", "FULL", "RAMPED_HALF_HALF"])
# NCES only
parser.add_argument("--learner_names", type=str, nargs="+", default=["SetTransformer"], help="Learner name.",
choices=["SetTransformer", "GRU", "LSTM"])
parser.add_argument("--proj_dim", type=int, default=128, help="Number of projection dimensions.")
parser.add_argument("--rnn_n_layers", type=int, default=2, help="Number of RNN layers (only for LSTM and GRU).")
parser.add_argument("--drop_prob", type=float, default=0.1, help="Drop probability.")
parser.add_argument("--num_heads", type=int, default=4, help="Number of heads")
parser.add_argument("--num_seeds", type=int, default=1, help="Number of seeds (only for SetTransformer).")
parser.add_argument("--num_inds", type=int, default=32, help="Number of inducing points (only for SetTransformer).")
parser.add_argument("--ln", type=bool, default=False, help="Layer normalization (only for SetTransformer).")
parser.add_argument("--learning_rate", type=float, default=1e-4, help="Learning rate.")
parser.add_argument("--decay_rate", type=int, default=0, help="Decay rate.")
parser.add_argument("--clip_value", type=int, default=5, help="Clip value.")
parser.add_argument("--batch_size", type=int, default=256, help="Batch size")
parser.add_argument("--num_workers", type=int, default=8, help="Number of workers")
parser.add_argument("--max_length", type=int, default=48, help="Maximum length")
parser.add_argument("--load_pretrained", type=bool, default=True, help="Load pretrained.")
parser.add_argument("--sorted_examples", type=bool, default=True, help="Sorted examples.")
# parser.add_argument("--pretrained_model_name", type=str, default="SetTransformer", help="Pretrained model name",
# choices=["SetTransformer", "GRU", "LSTM"])
if description is None:
return parser.parse_args()
return parser.parse_args(description)
if __name__ == '__main__':
execute(get_default_arguments())