Skip to content

Latest commit

 

History

History
56 lines (34 loc) · 1.68 KB

README.md

File metadata and controls

56 lines (34 loc) · 1.68 KB

Supervised Classifier Workflow

Nextflow workflow specific to outlining approaches to building and testing dynamic ML classifiers

Requirements/Dependencies

  • Nextflow 23.04.2 (requires: bash, java 11 [or later, up to 21] git and docker)
  • Python 3.10+
    • fpdf 1.7.2
    • numpy 1.23.5
    • matplotlib 3.8.0
    • dataframe-image 0.2.3
    • pandas 2.2.0
    • seaborn 0.13.1
    • xgboost 1.6.2
    • scipy 1.12.0
    • scikit-learn 1.4.0

Instructions

Note: This pipeline requires exported QuPath (0.5+) measurement tables (quantification files) generated from segmented single cell MxIF images. Those exported files need to include some annotated classification lables.

Configurable parameters

Field Description
bit_depth Original Image Capture quality: 8-bit (pixel values will be 0-255) or 16-bit (pixel values will be 0-65,535)
qupath_object_type "CellObject" has two ROIs, jointly and 4 components [Cell, Cytoplasm, Membrane, Nucleus] from QuPath; 'DetectionObject' is Single Whole Cell or Nucleus only
classifed_column_name
exclude_markers
nucleus_marker
override_normalization
downsample_normalization_plots
holdout_fraction
filter_out_junk_celltype_labels
minimum_label_count
max_xgb_cv