-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathbert_train.py
90 lines (79 loc) · 3.07 KB
/
bert_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
import torch
from model import ClfModel
import torch.nn as nn
from data import get_loader
from pytorch_pretrained_bert import BertAdam
from config import CLF_CONFIG
import numpy as np
import visdom
import argparse
import os
os.environ['CUDA_VISIBLE_DEVICES'] = '0,1'
viz = visdom.Visdom()
def create_vis_plot(_xlabel, _ylabel, _title, _legend):
return viz.line(
X=torch.zeros((1,)).cpu(),
Y=torch.zeros((1, 2)).cpu(),
opts=dict(
xlabel=_xlabel,
ylabel=_ylabel,
title=_title,
legend=_legend
)
)
def update_vis_plot(loss, acc, i, window):
viz.line(
X=torch.ones((1, 2)).cpu() * i,
Y=torch.Tensor([loss, acc]).unsqueeze(0).cpu(),
win=window,
update='replace' if i == 0 else 'append'
)
vis_title = 'BERT'
vis_legend = ['Loss', 'Accuracy']
epoch_plot = create_vis_plot('Epoch', 'Loss&Accuracy', vis_title, vis_legend)
parser = argparse.ArgumentParser(description='Text Classification By Nert')
parser.add_argument('--resume', default=None, type=str,
help='Checkpoint state_dict file to resume training from')
parser.add_argument('--start_epoch', default=0, type=int,
help='Resume training at this iter')
parser.add_argument('--save_folder', default='weights/',
help='Directory for saving checkpoint models')
parser.add_argument('--max_epochs', default=10, type=int,
help='Maximum number of epochs')
args = parser.parse_args()
if not os.path.exists(args.save_folder):
os.mkdir(args.save_folder)
if __name__ == '__main__':
model = ClfModel(**CLF_CONFIG).cuda()
if args.resume:
model.load_state_dict(torch.load(args.resume))
# optimizer = optim.Adam(model.parameters())
optimizer = BertAdam(model.parameters(), lr=5e-5)
Loss = nn.CrossEntropyLoss()
model.train()
for epoch in range(args.start_epoch, args.max_epochs):
losses = []
pred = []
gt = []
for i, (x, y) in enumerate(get_loader(batch_size=200)):
optimizer.zero_grad()
x = x.cuda()
y = y.cuda()
logits = model(x)
loss = Loss(logits, y)
loss.backward()
optimizer.step()
l = loss.item()
losses.append(l)
pred.append(logits)
gt.append(y)
# acc = np.mean((logits.argmax(dim=1).cpu().numpy() == y.cpu().numpy()).astype(np.float32))
if i % 10 == 0:
print('Epoch: %d, Iter: %d, Loss: %f' % (epoch, i, l))
pred = torch.cat(pred, dim=0).argmax(dim=1).cpu().numpy()
gt = torch.cat(gt, dim=0).cpu().numpy()
print('Epoch: %d, Loss: %f, Acc: %f' % (epoch, np.mean(losses), np.mean((pred == gt).astype(np.float32))))
update_vis_plot(np.mean(losses), np.mean((pred == gt).astype(np.float32)), epoch, epoch_plot)
# with open(os.path.join(args.save_folder, 'model.pkl'), 'wb') as f:
# torch.save(model.state_dict(), f)
torch.save(model.state_dict(), os.path.join(args.save_folder, 'model.pkl'))