-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfarm_script.r
292 lines (258 loc) · 11.8 KB
/
farm_script.r
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
##jmd
##7.25.11
##farm_script.r
##apply farm to meta db
#chmod +x farm_script.r
#call for hour w/ email: bsub -q hour -W 239 -P nc10 -R 'rusage[mem=3]' -N Rscript /msc/neurospora/FBA/farm/farm_script.r
#priority: bsub -q priority -P nc10 -R 'rusage[mem=3]' -N Rscript /msc/neurospora/FBA/farm/farm_script.r
source('/msc/neurospora/FBA/farm/farm_config.r')
source('/msc/neurospora/FBA/farm/phenos2rxns.r')
##read
#rxns annot
rxns <- read.delim('rxn_annot.txt')
rxns <- rxns[colnames(s.sp),]
all(rownames(rxns)==colnames(s.sp))
##subset for radford ko's
model.rxns <- read.csv('model_rxns.csv')[,1]
ss <- intersect(model.rxns, colnames(sg))
s.al <- sg[,ss]
s.al <- s.al[rowSums(abs(s.al))>0,]
rxns.al <- rxns[ss,]
nmets <- nrow(s.al); nrxns <- ncol(s.al)
##get rid of no flux rxns
#prune dead-end mets in reversible model which are connected to rest of network by a single reversible path, so can carry flux in irrev model
s.rev <- t(apply(s.al, 1, FUN=function(x){
tapply(x, INDEX=gsub('-L2R|-R2L', '', colnames(s.al)), FUN=function(y){ sum(abs(y)) })
}))
(deadend.mets <- setdiff(rownames(s.rev)[rowSums(s.rev)<=1], grep("CCO-EXTRACELLULAR", rownames(s.al), value=TRUE)) )
#max.v <- max.flux(a=s.al, v.ub=1)
max.nv <- max.n.flux(s.al, se='E', allow.all.trans=TRUE)
#find no flux rxns under sv=0, st can't cheat thru "export dilution"
max.nv2 <- max.n.flux(s.sp[rownames(s.al),colnames(s.al)], se='E', allow.all.trans=TRUE)
no.v <- names(max.nv)[max.nv<=0]
no.v2 <- names(max.nv2)[max.nv2<=0]
#write.table(rxns.al[no.v, c('FRAME.ID', 'rxn')], 'no_flux_rxns.txt', quote=FALSE, row.names=FALSE)
#no.v <- read.table('no_flux_rxns.txt', header=TRUE)
s.al <- s.al[,!(colnames(s.al) %in% no.v)]
s.al <- s.al[rowSums(abs(s.al))>0,]
rxns.al <- rxns.al[colnames(s.al),]
#summarize
(nmets <- nrow(s.al)); (nrxns <- ncol(s.al))
beta0 <- rep(1, nrxns)
##ub
#DO *NOT* change this ub to Inf, it is used in al.a
fva.ub <- rep(10**3, nrxns); names(fva.ub) <- colnames(s.al)
fva.ub[intersect(vogel$rxn, colnames(s.al))] <- 1000; fva.ub['SUCROSE-TRANS-RXN-L2R'] <- 5
#fba
cat('Checking growth:', '\n')
f <- FBA(s.al, sense='E', fba.ub=fva.ub)
f <- FBA(s.al, sense='E', fba.ub=fva.ub, fba.obj='FullBiomassComposition')
#trans.rxns doesn't include vogels, since their rxn names start w/ cpd name
#trans.rxns <- grep('^TRANS-RXN', colnames(s.al), value=TRUE)
#fva.ub[trans.rxns] <- 10^6
#fva.ub0 <- read.csv('s_comb_ub.csv')
#fva.ub[fva.ub0[,1]] <- fva.ub0[,2]
##set list of death conds
#only use death rxns that are not correctly predicted
rad.rxns.ko <- rad.rxns[!is.na(ck0$pred) & ck0$pred>10^-6]
#set list of rxns
#ko.rxns.lst <- rad.rxns.ko
(ko.rxns.lst <- rad.rxns['NCU09111.5'])
(n.death.conds <- length(ko.rxns.lst))
##get cutting planes
#these only allow rxns which can carry flux on vogels
cut.met.mat <- cut.mets(s.al, sense='E')
cut.rev.mat <- cut.revs(s.al, rxns.al)
#cut.met.mat <- Matrix(0, nrow=1, ncol=nrxns)
#cut.rev.mat <- Matrix(0, nrow=1, ncol=nrxns)
##instantiate
#conds: vogel & gapless growth, and mult death
#growth cond has nmets+nrxns rows, for sv=0 & v<=M*beta
#decision vars are [v1 mu1 lambda1 mu2 lambda2 ... v2 beta]
#constraints are [vogel.growth death.conds gapless cut.planes obj.constraint gdls]
al.a <- Matrix(0, nrow=nmets+nrxns+2*nrxns*n.death.conds+nmets+nrxns+nrow(cut.met.mat)+nrow(cut.rev.mat)+2,
ncol=nrxns+(nmets+nrxns)*n.death.conds+nrxns+nrxns)
al.lb <- al.obj <- rep(0, ncol(al.a))
al.ub <- rep(Inf, ncol(al.a))
al.rhs <- rep(0, nrow(al.a))
#set sense as NA and fill in below
al.sense <- character(nrow(al.a))
#index beta
beta.cols <- 2*nrxns+n.death.conds*(nmets+nrxns) + 1:nrxns
#set rnxs of value for dual
#c.rxns <- c('SUCROSE-TRANS-RXN-L2R','CIT-TRANS-RXN-L2R')
c.rxns <- 'biomass'
##names
#rownames
gapless.rownames <- paste('gapless', c(rownames(s.al), colnames(s.al)), sep='_')
cut.rownames <- c(paste('cut_met', 1:nrow(cut.met.mat), sep=''), paste('cut_rev', 1:nrow(cut.rev.mat), sep=''))
if (n.death.conds>0){
dual.rownames <- paste('dual_', rep(c('eq', 'ko'), each=nrxns), rep(1:n.death.conds, each=2*nrxns), '_', colnames(s.al), sep='')
rownames(al.a) <- c(paste('fba', c(rownames(s.al), colnames(s.al)), sep='_'), dual.rownames, gapless.rownames, cut.rownames, 'obj', 'gdls')
} else {
rownames(al.a) <- c(paste('fba', c(rownames(s.al), colnames(s.al)), sep='_'), gapless.rownames, cut.rownames, 'obj', 'gdls')
}
#colnames
if (n.death.conds>0){
dual.colnames <- paste(rep(c('mu','l'), times=c(nmets, nrxns)), rep(1:n.death.conds, each=nmets+nrxns), '_', c(rownames(s.al), colnames(s.al)), sep='')
colnames(al.a) <- c(colnames(s.al), dual.colnames, paste('gapless', colnames(s.al), sep='_'), paste('beta', colnames(s.al), sep='_'))
} else {
colnames(al.a) <- c(colnames(s.al), paste('gapless', colnames(s.al), sep='_'), paste('beta', colnames(s.al), sep='_'))
}
#vector names
names(al.lb) <- names(al.ub) <- names(al.obj) <- colnames(al.a)
names(al.rhs) <- names(al.sense) <- rownames(al.a)
##beta bounds & coefficients
#set coeff for unbalanced rxns
rxns.al$prob[rxns.al$prob<0] <- -0.05
#set obj coeffs: set to not get rid of any, since want min change and don't have gaplessness
al.obj[beta.cols] <- -0.1-rxns.al$prob
#by default beta lb already 0
al.ub[beta.cols] <- 1
##set betas of desired fluxes to 1
#already got rid of no-flux rxns, making this faster
#perform single min |v| to further reduce num of rxns
mv.lb <- numeric(nrxns); names(mv.lb) <- colnames(s.al); mv.lb['biomass'] <- 1
min.abs.v <- Rcplex(cvec=rep(1, nrxns), Amat=s.al, bvec=numeric(nmets), sense='E', lb=mv.lb)
nec.rxns0 <- colnames(s.al)[min.abs.v$xopt>0]
#min.v <- min.flux(a=s.al, rxns.min=nec.rxns0, min.bm=1)
#need.rxns <- names(min.v[min.v>0])
#write.table(need.rxns, 'necessary_rxns.txt', quote=FALSE, row.names=FALSE)
need.rxns <- read.table('necessary_rxns.txt', header=TRUE)[,1]
keep.rxns <- c('biomass', vogel$rxn, grep('^TRANS-RXN2T-232-', colnames(s.al), value=TRUE), need.rxns, "RXN0-5114-L2R", "TRANS-RXN2T-81-L2R[CCO-PM-FUNGI]")
al.lb[intersect(paste('beta', unique(keep.rxns), sep='_'), names(al.lb))] <- 1
##growth on vogel
#by default, sv rhs already 0
al.a[1:nmets, 1:nrxns] <- s.al
#make 'E' for sv=0
al.sense[1:nmets] <- 'E'
#Iv-fva.ub*beta<=0
al.a[cbind(nmets + 1:nrxns, 1:nrxns)] <- rep(1, ncol(s.al))
al.a[cbind(nmets + 1:nrxns, beta.cols)] <- -fva.ub
#accidentally tried Iv=1000*beta, w/ good results
al.sense[nmets + 1:nrxns] <- 'L'
#bounds on biomass, fva.ub['biomass']=0.2
al.lb['biomass'] <- 0.1
##get dual ub's
#use dual.ub=1 when only limited flux is biomass
dual.ub <- rep(1, nrxns)
names(dual.ub) <- colnames(s.al)
#need.rxns won't be KO'd, so their lambda's<=0
dual.ub[intersect(keep.rxns, names(dual.ub))] <- 0
##duals
fba.obj <- numeric(nrxns); names(fba.obj) <- colnames(s.al); fba.obj['biomass'] <- 1
#much faster to define in loop instead of defining in fba.dual & passing
for (death.cond.i in 1:n.death.conds){
ko.rxns <- ko.rxns.lst[[death.cond.i]]
##get indices
#rows for eq: s'mu-lambda=-c & ko: lambda+dual.ub*beta<=dual.ub
dci.rows <- nmets+nrxns+2*nrxns*(death.cond.i-1) + 1:(2*nrxns)
dci.eq.rows <- nmets+nrxns+2*nrxns*(death.cond.i-1) + 1:nrxns
dci.ko.rows <- nmets+nrxns+2*nrxns*(death.cond.i-1) + nrxns + 1:nrxns
#cols for dual vars mu & lambda
dci.cols <- nrxns+(death.cond.i-1)*(nmets+nrxns) + 1:(nmets+nrxns)
dci.mu.cols <- nrxns+(death.cond.i-1)*(nmets+nrxns) + 1:nmets
dci.l.cols <- nrxns+(death.cond.i-1)*(nmets+nrxns) + nmets + 1:nrxns
##assign dual submatrices
#eq & ko rows same for all dci.conds but need to break into mult assignments or else really slow
al.a[dci.eq.rows, dci.mu.cols] <- t(s.al)
al.a[cbind(dci.eq.rows, dci.l.cols)] <- rep(-1, ncol(s.al))
al.a[cbind(dci.ko.rows, dci.l.cols)] <- rep(1, nrxns)
##assign betas
dci.beta.coeff.v <- dual.ub
#don't want beta=1 -> lambda<0 for ko.rxns or nutrient rxns
rxns.no.beta <- c(c.rxns, ko.rxns)
dci.beta.coeff.v[which(colnames(s.al) %in% rxns.no.beta)] <- 0
al.a[cbind(dci.ko.rows, beta.cols)] <- dci.beta.coeff.v
##bounds on duals
#ub=Inf by default, above
al.lb[dci.l.cols] <- -Inf
#mu free for sv=0
al.lb[dci.mu.cols] <- -Inf
##bounds & penalties on nut rxns
al.lb[paste('l', death.cond.i, '_', c.rxns, sep='')] <- 0
#al.obj[paste('l', death.cond.i, '_', vogel$rxn, sep='')] <- 100
al.obj[paste('l', death.cond.i, '_', c.rxns, sep='')] <- 100
##rhs
al.sense[dci.rows] <- rep(c('E', 'L'), each=nrxns)
al.rhs[dci.rows] <- c(-fba.obj, dual.ub)
print(death.cond.i)
}
##gapless
#Sv-eps*|S|*beta>=0
#v-fva.ub*beta<=0
gl.v.cols <- nrxns+(nmets+nrxns)*n.death.conds + 1:nrxns
gl.produce.rows <- nmets+nrxns+2*nrxns*n.death.conds + 1:nmets
gl.ub.rows <- nmets+nrxns+2*nrxns*n.death.conds+nmets + 1:nrxns
#assign
al.a[gl.produce.rows, gl.v.cols] <- sign(s.al)
al.a[gl.produce.rows, beta.cols] <- 10^(-3)*abs(sign(s.al))
al.a[cbind(gl.ub.rows, gl.v.cols)] <- rep(1, ncol(s.al))
al.a[cbind(gl.ub.rows, beta.cols)] <- rep(-10^4, nrxns)
#rhs
#need to make all nuts highly available to capture feeder pathways for nuts not in vogel
#don't currently have rxns bringing these nuts in extracellular compartment, so allow these extracellular mets to deplete
al.rhs[gl.produce.rows][grep('[e]', names(al.rhs[gl.produce.rows]), fixed=TRUE)] <- -1000
#to get rid of gaplessness constraints for blp, make this -Inf
al.rhs[gl.produce.rows] <- -Inf
#sense
al.sense[gl.produce.rows] <- 'G'
al.sense[gl.ub.rows] <- 'L'
##cutting plane matrices
al.a[nmets+nrxns+2*nrxns*n.death.conds+nmets+nrxns + 1:nrow(cut.met.mat), beta.cols] <- cut.met.mat
al.a[nmets+nrxns+2*nrxns*n.death.conds+nmets+nrxns+nrow(cut.met.mat) + 1:nrow(cut.rev.mat), beta.cols] <- cut.rev.mat
al.sense[nmets+nrxns+2*nrxns*n.death.conds+nmets+nrxns + 1:(nrow(cut.met.mat)+nrow(cut.rev.mat))] <- 'L'
##obj constraint
#this is a minimization
al.a['obj',] <- al.obj
al.sense['obj'] <- 'L'
#start w/ Inf, until have obj value
al.rhs['obj'] <- Inf
#al.rhs['obj'] <- 1244 #al.obj %*% farm.blp$xopt
##gdls
al.a['gdls', beta.cols][beta0==1] <- -1
al.a['gdls', beta.cols][beta0==0] <- 1
al.sense['gdls'] <- 'L'
#k-sum(beta0), or Inf to relax
n.ko <- Inf
al.rhs['gdls'] <- n.ko-sum(beta0)
print(paste('N KO =', n.ko))
##farm blp
vtype <- rep('C', ncol(al.a))
vtype[beta.cols] <- 'B'
all(!is.na(al.obj), is.finite(fva.ub))
farm.blp <- Rcplex(cvec=al.obj, Amat=al.a, bvec=al.rhs, ub=al.ub, lb=al.lb, sense=al.sense, vtype=vtype, control=list(mipemphasis=0, tilim=3600/10)) #epagap=100*(n.death.conds-1)+25
farm.blp$stat
x <- farm.blp$xopt; names(x) <- names(al.obj)
print("Non-binary CPLEX 'binary' variables")
y <- x[beta.cols][!is.na(x[beta.cols]) & !(x[beta.cols] %in% c(0,1))]; y[order(-y)]
##putative consistent radford predictions
l.bm <- x[paste('l', 1:n.death.conds, '_biomass', sep='')]
print('Duals predicted to have reduced growth.')
l.bm[l.bm<1-10^-6]
#ko.rxns.lst[l.bm<1-10^-6]
#get >500 lambda's>0 when use dual.ub=1000
#ll <- x[paste('l1_', colnames(s.al), sep='')]; ll <- ll[order(-ll)]; ll[1:9]
##get beta
eps <- 10^-6; thresh <- 10^-6
al.beta <- x[beta.cols]
al.v1 <- x[1:nrxns]
sum(al.beta>eps)
rxns1 <- sub('beta_', '', names(al.beta)[al.beta>thresh])
beta0 <- as.numeric(al.beta>=thresh)
#print(paste("rid rxns:", setdiff(jd.rxns, rxns1)))
(rid2 <- setdiff(colnames(s.al), rxns1))
#print(paste("rid rxns = c(", paste(rid2, collapse="\', \'"), ")", sep="\'"))
##check ko
f <- FBA(s.al[,rxns1], sense='E')
#rad
ck <- check.ko(s.test=s.al[,rxns1], ko.lst=ko.rxns.lst, sense='E', annot.df=rad0[names(rad.rxns),])
summary(as.factor(ck$pred>10^-6))
ck[ck$obs==0 & ck0$pred>0,]
#broad
#ckb <- check.ko(s.test=s.al[,rxns1], rxns.test=rxns.al[rxns1,], ko.lst=broad.rxns, obs=1, ub=fva.ub[rxns1])
#table(ckb$obs, ckb$pred>eps)
##write
#write.csv(model.rxns, 'model_rxns.csv', row.names=FALSE)
#rr.out <- data.frame(frame=rxns.al[,3], flux=al.v1, beta=al.beta, name=rownames(rxns.al))
#write.table(rr.out, paste('rxns_script_aug1_nKO', n.ko, '.txt', sep=''), quote=FALSE, row.names=FALSE, sep='\t')